Найду корень уравнения: x + 1/x = a
a*x^2 + b*x + c = 0
D = b^2 - 4 * a * c =
(-a)^2 - 4 * (1) * (1) = -4 + a^2
x1 = (-b + sqrt(D)) / (2*a)
x2 = (-b - sqrt(D)) / (2*a)
/ ___________________________________________ \ ___________________________________________
| / 2 / / 2 2 \\| / 2 / / 2 2 \\
| 4 / / 2 2 \ 2 2 |atan2\2*im(a)*re(a), -4 + re (a) - im (a)/|| 4 / / 2 2 \ 2 2 |atan2\2*im(a)*re(a), -4 + re (a) - im (a)/|
| \/ \-4 + re (a) - im (a)/ + 4*im (a)*re (a) *sin|------------------------------------------|| \/ \-4 + re (a) - im (a)/ + 4*im (a)*re (a) *cos|------------------------------------------|
re(a) |im(a) \ 2 /| \ 2 /
x1 = ----- + I*|----- - -----------------------------------------------------------------------------------------------| - -----------------------------------------------------------------------------------------------
2 \ 2 2 / 2 / ___________________________________________ \ ___________________________________________
| / 2 / / 2 2 \\| / 2 / / 2 2 \\
| 4 / / 2 2 \ 2 2 |atan2\2*im(a)*re(a), -4 + re (a) - im (a)/|| 4 / / 2 2 \ 2 2 |atan2\2*im(a)*re(a), -4 + re (a) - im (a)/|
| \/ \-4 + re (a) - im (a)/ + 4*im (a)*re (a) *sin|------------------------------------------|| \/ \-4 + re (a) - im (a)/ + 4*im (a)*re (a) *cos|------------------------------------------|
re(a) |im(a) \ 2 /| \ 2 /
x2 = ----- + I*|----- + -----------------------------------------------------------------------------------------------| + -----------------------------------------------------------------------------------------------
2 \ 2 2 / 2