Произведение корней x^3=125

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Решение

    Сумма и произведение корней [src]
    сумма
                    ___               ___
          5   5*I*\/ 3      5   5*I*\/ 3 
    5 + - - - --------- + - - + ---------
          2       2         2       2    
    $$\left(5 + \left(- \frac{5}{2} - \frac{5 \sqrt{3} i}{2}\right)\right) + \left(- \frac{5}{2} + \frac{5 \sqrt{3} i}{2}\right)$$
    =
    0
    $$0$$
    произведение
      /            ___\ /            ___\
      |  5   5*I*\/ 3 | |  5   5*I*\/ 3 |
    5*|- - - ---------|*|- - + ---------|
      \  2       2    / \  2       2    /
    $$5 \left(- \frac{5}{2} - \frac{5 \sqrt{3} i}{2}\right) \left(- \frac{5}{2} + \frac{5 \sqrt{3} i}{2}\right)$$
    =
    125
    $$125$$
    Теорема Виета
    это приведённое кубическое уравнение
    $$p x^{2} + q x + v + x^{3} = 0$$
    где
    $$p = \frac{b}{a}$$
    $$p = 0$$
    $$q = \frac{c}{a}$$
    $$q = 0$$
    $$v = \frac{d}{a}$$
    $$v = -125$$
    Формулы Виета
    $$x_{1} + x_{2} + x_{3} = - p$$
    $$x_{1} x_{2} + x_{1} x_{3} + x_{2} x_{3} = q$$
    $$x_{1} x_{2} x_{3} = v$$
    $$x_{1} + x_{2} + x_{3} = 0$$
    $$x_{1} x_{2} + x_{1} x_{3} + x_{2} x_{3} = 0$$
    $$x_{1} x_{2} x_{3} = -125$$