График функции пересекает ось X при f = 0 значит надо решить уравнение: x3−4x=0 Решаем это уравнение Точки пересечения с осью X:
Аналитическое решение x1=−2 x2=0 x3=2 Численное решение x1=2 x2=0 x3=−2
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0: подставляем x = 0 в x^3 - 4*x. 03−4⋅0 Результат: f(0)=0 Точка:
(0, 0)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение dxdf(x)=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции: dxdf(x)= первая производная 3x2−4=0 Решаем это уравнение Корни этого ур-ния x1=−323 x2=323 Зн. экстремумы в точках:
___ ___
-2*\/ 3 16*\/ 3
(--------, --------)
3 9
___ ___
2*\/ 3 -16*\/ 3
(-------, ---------)
3 9
Интервалы возрастания и убывания функции: Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума: Минимумы функции в точках: x1=323 Максимумы функции в точках: x1=−323 Убывает на промежутках (−∞,−323]∪[323,∞) Возрастает на промежутках [−323,323]
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение dx2d2f(x)=0 (вторая производная равняется нулю), корни полученного уравнения будут точками перегибов для указанного графика функции: dx2d2f(x)= вторая производная 6x=0 Решаем это уравнение Корни этого ур-ния x1=0
Интервалы выпуклости и вогнутости: Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов: Вогнутая на промежутках [0,∞) Выпуклая на промежутках (−∞,0]
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo x→−∞lim(x3−4x)=−∞ Возьмём предел значит, горизонтальной асимптоты слева не существует x→∞lim(x3−4x)=∞ Возьмём предел значит, горизонтальной асимптоты справа не существует
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции x^3 - 4*x, делённой на x при x->+oo и x ->-oo x→−∞lim(xx3−4x)=∞ Возьмём предел значит, наклонной асимптоты слева не существует x→∞lim(xx3−4x)=∞ Возьмём предел значит, наклонной асимптоты справа не существует
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x). Итак, проверяем: x3−4x=−x3+4x - Нет x3−4x=x3−4x - Нет значит, функция не является ни чётной ни нечётной