График функции y = (x^2-1)/(x^2-4)

Учитель очень удивится увидев твоё верное решение 😼

v

График:

от до

Точки пересечения:

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
        2    
       x  - 1
f(x) = ------
        2    
       x  - 4
f(x)=x21x24f{\left (x \right )} = \frac{x^{2} - 1}{x^{2} - 4}
График функции
0-40-30-20-1010203040-1010
Область определения функции
Точки, в которых функция точно неопределена:
x1=2x_{1} = -2
x2=2x_{2} = 2
Точки пересечения с осью координат X
График функции пересекает ось X при f = 0
значит надо решить уравнение:
x21x24=0\frac{x^{2} - 1}{x^{2} - 4} = 0
Решаем это уравнение
Точки пересечения с осью X:

Аналитическое решение
x1=1x_{1} = -1
x2=1x_{2} = 1
Численное решение
x1=1x_{1} = 1
x2=1x_{2} = -1
Точки пересечения с осью координат Y
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в (x^2 - 1)/(x^2 - 4).
1+024+02\frac{-1 + 0^{2}}{-4 + 0^{2}}
Результат:
f(0)=14f{\left (0 \right )} = \frac{1}{4}
Точка:
(0, 1/4)
Экстремумы функции
Для того, чтобы найти экстремумы, нужно решить уравнение
ddxf(x)=0\frac{d}{d x} f{\left (x \right )} = 0
(производная равна нулю),
и корни этого уравнения будут экстремумами данной функции:
ddxf(x)=\frac{d}{d x} f{\left (x \right )} =
Первая производная
2xx242x(x21)(x24)2=0\frac{2 x}{x^{2} - 4} - \frac{2 x \left(x^{2} - 1\right)}{\left(x^{2} - 4\right)^{2}} = 0
Решаем это уравнение
Корни этого ур-ния
x1=0x_{1} = 0
Зн. экстремумы в точках:
(0, 1/4)


Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумов у функции нет
Максимумы функции в точках:
x1=0x_{1} = 0
Убывает на промежутках
(-oo, 0]

Возрастает на промежутках
[0, oo)
Точки перегибов
Найдем точки перегибов, для этого надо решить уравнение
d2dx2f(x)=0\frac{d^{2}}{d x^{2}} f{\left (x \right )} = 0
(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции:
d2dx2f(x)=\frac{d^{2}}{d x^{2}} f{\left (x \right )} =
Вторая производная
1x24(8x2x24+8x2(x21)(x24)2+22x22x24)=0\frac{1}{x^{2} - 4} \left(- \frac{8 x^{2}}{x^{2} - 4} + \frac{8 x^{2} \left(x^{2} - 1\right)}{\left(x^{2} - 4\right)^{2}} + 2 - \frac{2 x^{2} - 2}{x^{2} - 4}\right) = 0
Решаем это уравнение
Решения не найдены,
возможно перегибов у функции нет
Вертикальные асимптоты
Есть:
x1=2x_{1} = -2
x2=2x_{2} = 2
Горизонтальные асимптоты
Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
limx(x21x24)=1\lim_{x \to -\infty}\left(\frac{x^{2} - 1}{x^{2} - 4}\right) = 1
Возьмём предел
значит,
уравнение горизонтальной асимптоты слева:
y=1y = 1
limx(x21x24)=1\lim_{x \to \infty}\left(\frac{x^{2} - 1}{x^{2} - 4}\right) = 1
Возьмём предел
значит,
уравнение горизонтальной асимптоты справа:
y=1y = 1
Наклонные асимптоты
Наклонную асимптоту можно найти, подсчитав предел функции (x^2 - 1)/(x^2 - 4), делённой на x при x->+oo и x ->-oo
limx(x21x(x24))=0\lim_{x \to -\infty}\left(\frac{x^{2} - 1}{x \left(x^{2} - 4\right)}\right) = 0
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой справа
limx(x21x(x24))=0\lim_{x \to \infty}\left(\frac{x^{2} - 1}{x \left(x^{2} - 4\right)}\right) = 0
Возьмём предел
значит,
наклонная совпадает с горизонтальной асимптотой слева
Чётность и нечётность функции
Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
x21x24=x21x24\frac{x^{2} - 1}{x^{2} - 4} = \frac{x^{2} - 1}{x^{2} - 4}
- Да
x21x24=x21x24\frac{x^{2} - 1}{x^{2} - 4} = - \frac{x^{2} - 1}{x^{2} - 4}
- Нет
значит, функция
является
чётной