Перепишите подынтегральное выражение:
Есть несколько способов вычислить этот интеграл.
пусть .
Тогда пусть и подставим :
Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:
Перепишите подынтегральное выражение:
Интегрируем почленно:
Интеграл есть когда :
Интеграл от константы есть эта константа, умноженная на переменную интегрирования:
Интеграл есть .
Результат есть:
Таким образом, результат будет:
Если сейчас заменить ещё в:
Перепишите подынтегральное выражение:
Интегрируем почленно:
пусть .
Тогда пусть и подставим :
Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:
Интеграл от константы есть эта константа, умноженная на переменную интегрирования:
Таким образом, результат будет:
Если сейчас заменить ещё в:
Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:
пусть .
Тогда пусть и подставим :
Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:
Интеграл от константы есть эта константа, умноженная на переменную интегрирования:
Таким образом, результат будет:
Если сейчас заменить ещё в:
Таким образом, результат будет:
Перепишите подынтегральное выражение:
пусть .
Тогда пусть и подставим :
Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:
Интеграл есть .
Таким образом, результат будет:
Если сейчас заменить ещё в:
Результат есть:
Перепишите подынтегральное выражение:
Интегрируем почленно:
пусть .
Тогда пусть и подставим :
Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:
Интеграл от константы есть эта константа, умноженная на переменную интегрирования:
Таким образом, результат будет:
Если сейчас заменить ещё в:
Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:
пусть .
Тогда пусть и подставим :
Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:
Интеграл от константы есть эта константа, умноженная на переменную интегрирования:
Таким образом, результат будет:
Если сейчас заменить ещё в:
Таким образом, результат будет:
Перепишите подынтегральное выражение:
пусть .
Тогда пусть и подставим :
Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:
Интеграл есть .
Таким образом, результат будет:
Если сейчас заменить ещё в:
Результат есть:
Добавляем постоянную интегрирования:
Ответ:
2
3 -1 + 4*cos (1)
- - log(cos(1)) - --------------
4 4
4*cos (1) =
2
3 -1 + 4*cos (1)
- - log(cos(1)) - --------------
4 4
4*cos (1) 0.87365244751029
/ | / 2 \ 4 | 5 log\sec (x)/ 2 sec (x) | tan (x) dx = C + ------------ - sec (x) + ------- | 2 4 /
![Найти интеграл от y = f(x) = tan(x)^(5) dx (тангенс от (х) в степени (5)) - с подробным решением онлайн [Есть ответ!] Интеграл tan(x)^(5) (dx) /media/krcore-image-pods/hash/indefinite/9/0f/ad77a8a6a4df79559c4c69f930065.png](/media/krcore-image-pods/hash/indefinite/9/0f/ad77a8a6a4df79559c4c69f930065.png)