Интеграл x/(x^4+1) (dx)

Преподаватель очень удивится увидев твоё верное решение 😼

d

↑ Введите нижнюю границу интеграла и верхнюю границу интеграла b, подинтегральную функцию f(x) - смотрите пример

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

    Решение

    Вы ввели [src]
      1          
      /          
     |           
     |    x      
     |  ------ dx
     |   4       
     |  x  + 1   
     |           
    /            
    0            
    $$\int\limits_{0}^{1} \frac{x}{x^{4} + 1}\, dx$$
    Подробное решение
    1. пусть .

      Тогда пусть и подставим :

      1. Интеграл есть .

      Если сейчас заменить ещё в:

    2. Добавляем постоянную интегрирования:


    Ответ:

    График
    Ответ [src]
    pi
    --
    8 
    $$\frac{\pi}{8}$$
    =
    =
    pi
    --
    8 
    $$\frac{\pi}{8}$$
    Численный ответ [src]
    0.392699081698724
    Ответ (Неопределённый) [src]
      /                        
     |                     / 2\
     |   x             atan\x /
     | ------ dx = C + --------
     |  4                 2    
     | x  + 1                  
     |                         
    /                          
    $$\int \frac{x}{x^{4} + 1}\, dx = C + \frac{\operatorname{atan}{\left(x^{2} \right)}}{2}$$
    График
    Интеграл x/(x^4+1) (dx) /media/krcore-image-pods/hash/indefinite/e/01/1a9cf548842d5b4fd01a412c32601.png