/ 1 sin(a) cos(a)
|- -- + ------ + ------ for And(a > -oo, a < oo, a != 0)
| 2 a 2
< a a
|
| 1/2 otherwise
\
$$\begin{cases} \frac{\sin{\left(a \right)}}{a} + \frac{\cos{\left(a \right)}}{a^{2}} - \frac{1}{a^{2}} & \text{for}\: a > -\infty \wedge a < \infty \wedge a \neq 0 \\\frac{1}{2} & \text{otherwise} \end{cases}$$
/ 1 sin(a) cos(a)
|- -- + ------ + ------ for And(a > -oo, a < oo, a != 0)
| 2 a 2
< a a
|
| 1/2 otherwise
\
$$\begin{cases} \frac{\sin{\left(a \right)}}{a} + \frac{\cos{\left(a \right)}}{a^{2}} - \frac{1}{a^{2}} & \text{for}\: a > -\infty \wedge a < \infty \wedge a \neq 0 \\\frac{1}{2} & \text{otherwise} \end{cases}$$
Ответ (Неопределённый)
[src] // 2 \
|| x |
|| -- for a = 0|
|| 2 |
/ || | // x for a = 0\
| ||/-cos(a*x) | || |
| x*cos(a*x) dx = C - |<|---------- for a != 0 | + x*|$$\int x \cos{\left(a x \right)}\, dx = C + x \left(\begin{cases} x & \text{for}\: a = 0 \\\frac{\sin{\left(a x \right)}}{a} & \text{otherwise} \end{cases}\right) - \begin{cases} \frac{x^{2}}{2} & \text{for}\: a = 0 \\\frac{\begin{cases} - \frac{\cos{\left(a x \right)}}{a} & \text{for}\: a \neq 0 \\0 & \text{otherwise} \end{cases}}{a} & \text{otherwise} \end{cases}$$