a_n - a_k
d = ---------
n - k $$d = \frac{- a_{k} + a_{n}}{- k + n}$$
$$a_{1} = a_{n} + d \left(n - 1\right)$$
(-1 + n)*(a_n - a_k)
a_1 = a_n - --------------------
n - k $$a_{1} = a_{n} - \frac{\left(- a_{k} + a_{n}\right) \left(n - 1\right)}{- k + n}$$
a_22 - a_10
d = -----------
12 $$d = \frac{- a_{10} + a_{22}}{12}$$
a_22 - a_10
a_1 = a_22 - -----------*20
12 $$a_{1} = a_{22} - 20 \frac{- a_{10} + a_{22}}{12}$$
53
35/2 + --
10
d = ---------
12 $$d = \frac{\frac{53}{10} + \frac{35}{2}}{12}$$
53
35/2 + --
35 10
a_1 = -- - ---------*21
2 12 $$a_{1} = - 21 \frac{\frac{53}{10} + \frac{35}{2}}{12} + \frac{35}{2}$$
$$a_{1} = - \frac{112}{5}$$
-112/5; -41/2; -93/5; -167/10; -74/5; -129/10; -11; -91/10; -36/5; -53/10; -17/5; -3/2; 2/5; 23/10; 21/5; 61/10; 8; 99/10; 59/5; 137/10; 78/5; 35/2...
$$a_{1} = - \frac{112}{5}$$
$$a_{2} = - \frac{41}{2}$$
$$a_{3} = - \frac{93}{5}$$
$$a_{4} = - \frac{167}{10}$$
$$a_{5} = - \frac{74}{5}$$
$$a_{6} = - \frac{129}{10}$$
$$a_{8} = - \frac{91}{10}$$
$$a_{9} = - \frac{36}{5}$$
$$a_{10} = - \frac{53}{10}$$
$$a_{11} = - \frac{17}{5}$$
$$a_{12} = - \frac{3}{2}$$
$$a_{14} = \frac{23}{10}$$
$$a_{15} = \frac{21}{5}$$
$$a_{16} = \frac{61}{10}$$
$$a_{18} = \frac{99}{10}$$
$$a_{19} = \frac{59}{5}$$
$$a_{20} = \frac{137}{10}$$
$$a_{21} = \frac{78}{5}$$
$$a_{22} = \frac{35}{2}$$
n*(a_1 + a_n)
S = -------------
2 $$S = \frac{n \left(a_{1} + a_{n}\right)}{2}$$
$$S_{22} = - \frac{539}{10}$$