a_n - a_k
d = ---------
n - k $$d = \frac{- a_{k} + a_{n}}{- k + n}$$
$$a_{1} = a_{n} + d \left(n - 1\right)$$
(-1 + n)*(a_n - a_k)
a_1 = a_n - --------------------
n - k $$a_{1} = a_{n} - \frac{\left(- a_{k} + a_{n}\right) \left(n - 1\right)}{- k + n}$$
a_2 - a_1
d = ---------
1 $$d = \frac{- a_{1} + a_{2}}{1}$$
a_2 - a_1
a_1 = a_2 - ---------*0
1 $$a_{1} = a_{2} - \frac{- a_{1} + a_{2}}{1} \cdot 0$$
7 - 2
a_1 = 7 - -----*1
1 $$a_{1} = \left(-1\right) \frac{-2 + 7}{1} \cdot 1 + 7$$
n*(a_1 + a_n)
S = -------------
2 $$S = \frac{n \left(a_{1} + a_{n}\right)}{2}$$
2*(2 + 7)
S2 = ---------
2 $$S_{2} = \frac{2 \cdot \left(2 + 7\right)}{2}$$