a_n - a_k
d = ---------
n - k $$d = \frac{- a_{k} + a_{n}}{- k + n}$$
$$a_{1} = a_{n} + d \left(n - 1\right)$$
(-1 + n)*(a_n - a_k)
a_1 = a_n - --------------------
n - k $$a_{1} = a_{n} - \frac{\left(- a_{k} + a_{n}\right) \left(n - 1\right)}{- k + n}$$
a_10 - a_1
d = ----------
9 $$d = \frac{- a_{1} + a_{10}}{9}$$
a_10 - a_1
a_1 = a_10 - ----------*8
9 $$a_{1} = a_{10} - \frac{- a_{1} + a_{10}}{9} \cdot 8$$
$$d = \frac{-20 + 35}{9}$$
35 - 20
a_1 = 35 - -------*9
9 $$a_{1} = \left(-1\right) \frac{-20 + 35}{9} \cdot 9 + 35$$
n*(a_1 + a_n)
S = -------------
2 $$S = \frac{n \left(a_{1} + a_{n}\right)}{2}$$
10*(20 + 35)
S10 = ------------
2 $$S_{10} = \frac{10 \cdot \left(20 + 35\right)}{2}$$