Задача a1=-11 S111=0 (на арифметическую прогрессию)

Учитель очень удивится увидев твоё верное решение 😼

Решение

Вы ввели [src]
a1=-11 s111=0
Найдено в тексте задачи:
Первый член: a1 = -11
n-член an (n = 110 + 1 = 111)
Разность: d = 2*((0)/111-(-11))/(111-1)
Другие члены: a1 = -11
Пример: ?
Найти члены от 1 до 111
Пример [src]
...
Расширенный пример:
-11; -54/5; -53/5; -52/5; -51/5; -10; -49/5; -48/5; -47/5; -46/5; -9; -44/5; -43/5; -42/5; -41/5; -8; -39/5; -38/5; -37/5; -36/5; -7; -34/5; -33/5; -32/5; -31/5; -6; -29/5; -28/5; -27/5; -26/5; -5; -24/5; -23/5; -22/5; -21/5; -4; -19/5; -18/5; -17/5; -16/5; -3; -14/5; -13/5; -12/5; -11/5; -2; -9/5; -8/5; -7/5; -6/5; -1; -4/5; -3/5; -2/5; -1/5; 0; 1/5; 2/5; 3/5; 4/5; 1; 6/5; 7/5; 8/5; 9/5; 2; 11/5; 12/5; 13/5; 14/5; 3; 16/5; 17/5; 18/5; 19/5; 4; 21/5; 22/5; 23/5; 24/5; 5; 26/5; 27/5; 28/5; 29/5; 6; 31/5; 32/5; 33/5; 34/5; 7; 36/5; 37/5; 38/5; 39/5; 8; 41/5; 42/5; 43/5; 44/5; 9; 46/5; 47/5; 48/5; 49/5; 10; 51/5; 52/5; 53/5; 54/5; 11...
a1 = -11
a1=11a_{1} = -11
a2 = -54/5
a2=545a_{2} = - \frac{54}{5}
a3 = -53/5
a3=535a_{3} = - \frac{53}{5}
a4 = -52/5
a4=525a_{4} = - \frac{52}{5}
a5 = -51/5
a5=515a_{5} = - \frac{51}{5}
a6 = -10
a6=10a_{6} = -10
a7 = -49/5
a7=495a_{7} = - \frac{49}{5}
a8 = -48/5
a8=485a_{8} = - \frac{48}{5}
a9 = -47/5
a9=475a_{9} = - \frac{47}{5}
a10 = -46/5
a10=465a_{10} = - \frac{46}{5}
a11 = -9
a11=9a_{11} = -9
a12 = -44/5
a12=445a_{12} = - \frac{44}{5}
a13 = -43/5
a13=435a_{13} = - \frac{43}{5}
a14 = -42/5
a14=425a_{14} = - \frac{42}{5}
a15 = -41/5
a15=415a_{15} = - \frac{41}{5}
a16 = -8
a16=8a_{16} = -8
a17 = -39/5
a17=395a_{17} = - \frac{39}{5}
a18 = -38/5
a18=385a_{18} = - \frac{38}{5}
a19 = -37/5
a19=375a_{19} = - \frac{37}{5}
a20 = -36/5
a20=365a_{20} = - \frac{36}{5}
a21 = -7
a21=7a_{21} = -7
a22 = -34/5
a22=345a_{22} = - \frac{34}{5}
a23 = -33/5
a23=335a_{23} = - \frac{33}{5}
a24 = -32/5
a24=325a_{24} = - \frac{32}{5}
a25 = -31/5
a25=315a_{25} = - \frac{31}{5}
a26 = -6
a26=6a_{26} = -6
a27 = -29/5
a27=295a_{27} = - \frac{29}{5}
a28 = -28/5
a28=285a_{28} = - \frac{28}{5}
a29 = -27/5
a29=275a_{29} = - \frac{27}{5}
a30 = -26/5
a30=265a_{30} = - \frac{26}{5}
a31 = -5
a31=5a_{31} = -5
a32 = -24/5
a32=245a_{32} = - \frac{24}{5}
a33 = -23/5
a33=235a_{33} = - \frac{23}{5}
a34 = -22/5
a34=225a_{34} = - \frac{22}{5}
a35 = -21/5
a35=215a_{35} = - \frac{21}{5}
a36 = -4
a36=4a_{36} = -4
a37 = -19/5
a37=195a_{37} = - \frac{19}{5}
a38 = -18/5
a38=185a_{38} = - \frac{18}{5}
a39 = -17/5
a39=175a_{39} = - \frac{17}{5}
a40 = -16/5
a40=165a_{40} = - \frac{16}{5}
a41 = -3
a41=3a_{41} = -3
a42 = -14/5
a42=145a_{42} = - \frac{14}{5}
a43 = -13/5
a43=135a_{43} = - \frac{13}{5}
a44 = -12/5
a44=125a_{44} = - \frac{12}{5}
a45 = -11/5
a45=115a_{45} = - \frac{11}{5}
a46 = -2
a46=2a_{46} = -2
a47 = -9/5
a47=95a_{47} = - \frac{9}{5}
a48 = -8/5
a48=85a_{48} = - \frac{8}{5}
a49 = -7/5
a49=75a_{49} = - \frac{7}{5}
a50 = -6/5
a50=65a_{50} = - \frac{6}{5}
a51 = -1
a51=1a_{51} = -1
a52 = -4/5
a52=45a_{52} = - \frac{4}{5}
a53 = -3/5
a53=35a_{53} = - \frac{3}{5}
a54 = -2/5
a54=25a_{54} = - \frac{2}{5}
a55 = -1/5
a55=15a_{55} = - \frac{1}{5}
a56 = 0
a56=0a_{56} = 0
a57 = 1/5
a57=15a_{57} = \frac{1}{5}
a58 = 2/5
a58=25a_{58} = \frac{2}{5}
a59 = 3/5
a59=35a_{59} = \frac{3}{5}
a60 = 4/5
a60=45a_{60} = \frac{4}{5}
a61 = 1
a61=1a_{61} = 1
a62 = 6/5
a62=65a_{62} = \frac{6}{5}
a63 = 7/5
a63=75a_{63} = \frac{7}{5}
a64 = 8/5
a64=85a_{64} = \frac{8}{5}
a65 = 9/5
a65=95a_{65} = \frac{9}{5}
a66 = 2
a66=2a_{66} = 2
a67 = 11/5
a67=115a_{67} = \frac{11}{5}
a68 = 12/5
a68=125a_{68} = \frac{12}{5}
a69 = 13/5
a69=135a_{69} = \frac{13}{5}
a70 = 14/5
a70=145a_{70} = \frac{14}{5}
a71 = 3
a71=3a_{71} = 3
a72 = 16/5
a72=165a_{72} = \frac{16}{5}
a73 = 17/5
a73=175a_{73} = \frac{17}{5}
a74 = 18/5
a74=185a_{74} = \frac{18}{5}
a75 = 19/5
a75=195a_{75} = \frac{19}{5}
a76 = 4
a76=4a_{76} = 4
a77 = 21/5
a77=215a_{77} = \frac{21}{5}
a78 = 22/5
a78=225a_{78} = \frac{22}{5}
a79 = 23/5
a79=235a_{79} = \frac{23}{5}
a80 = 24/5
a80=245a_{80} = \frac{24}{5}
a81 = 5
a81=5a_{81} = 5
a82 = 26/5
a82=265a_{82} = \frac{26}{5}
a83 = 27/5
a83=275a_{83} = \frac{27}{5}
a84 = 28/5
a84=285a_{84} = \frac{28}{5}
a85 = 29/5
a85=295a_{85} = \frac{29}{5}
a86 = 6
a86=6a_{86} = 6
a87 = 31/5
a87=315a_{87} = \frac{31}{5}
a88 = 32/5
a88=325a_{88} = \frac{32}{5}
a89 = 33/5
a89=335a_{89} = \frac{33}{5}
a90 = 34/5
a90=345a_{90} = \frac{34}{5}
a91 = 7
a91=7a_{91} = 7
a92 = 36/5
a92=365a_{92} = \frac{36}{5}
a93 = 37/5
a93=375a_{93} = \frac{37}{5}
a94 = 38/5
a94=385a_{94} = \frac{38}{5}
a95 = 39/5
a95=395a_{95} = \frac{39}{5}
a96 = 8
a96=8a_{96} = 8
a97 = 41/5
a97=415a_{97} = \frac{41}{5}
a98 = 42/5
a98=425a_{98} = \frac{42}{5}
a99 = 43/5
a99=435a_{99} = \frac{43}{5}
a100 = 44/5
a100=445a_{100} = \frac{44}{5}
a101 = 9
a101=9a_{101} = 9
a102 = 46/5
a102=465a_{102} = \frac{46}{5}
a103 = 47/5
a103=475a_{103} = \frac{47}{5}
a104 = 48/5
a104=485a_{104} = \frac{48}{5}
a105 = 49/5
a105=495a_{105} = \frac{49}{5}
a106 = 10
a106=10a_{106} = 10
a107 = 51/5
a107=515a_{107} = \frac{51}{5}
a108 = 52/5
a108=525a_{108} = \frac{52}{5}
a109 = 53/5
a109=535a_{109} = \frac{53}{5}
a110 = 54/5
a110=545a_{110} = \frac{54}{5}
a111 = 11
a111=11a_{111} = 11
...
Первый член [src]
a_1 = -11
a1=11a_{1} = -11
Разность [src]
$d = 2*(S_k / k - a_1) / (k - 1)
d=2(S111/111a1)/(1111)d = 2*(S_111 / 111 - a_1) / (111 - 1)
d=2(S111/111a1)/111d = 2*(S_111 / 111 - a_1) / 111
подставляем
d=2((0)/111(11))/(1111)d = 2*((0)/111 - (-11)) / (111 - 1)
d = 1/5
d=15d = \frac{1}{5}
n-член [src]
a_n = a_1 + d*(-1 + n)
an=a1+d(n1)a_{n} = a_{1} + d \left(n - 1\right)
a_111 = 11
a111=11a_{111} = 11
Сумма [src]
    n*(a_1 + a_n)
S = -------------
          2      
S=n(a1+an)2S = \frac{n \left(a_{1} + a_{n}\right)}{2}
       111*(-11 + 11)
S111 = --------------
             2       
S111=111(11+11)2S_{111} = \frac{111 \left(-11 + 11\right)}{2}
S111 = 0
S111=0S_{111} = 0