a_n - a_k
d = ---------
n - k $$d = \frac{- a_{k} + a_{n}}{- k + n}$$
$$a_{1} = a_{n} + d \left(n - 1\right)$$
(-1 + n)*(a_n - a_k)
a_1 = a_n - --------------------
n - k $$a_{1} = a_{n} - \frac{\left(- a_{k} + a_{n}\right) \left(n - 1\right)}{- k + n}$$
a_20 - a_14
d = -----------
6 $$d = \frac{- a_{14} + a_{20}}{6}$$
a_20 - a_14
a_1 = a_20 - -----------*18
6 $$a_{1} = a_{20} - 18 \frac{- a_{14} + a_{20}}{6}$$
215 + 100
d = ---------
6 $$d = \frac{100 + 215}{6}$$
215 + 100
a_1 = 215 - ---------*19
6 $$a_{1} = - 19 \frac{100 + 215}{6} + 215$$
$$a_{1} = - \frac{1565}{2}$$
-1565/2; -730; -1355/2; -625; -1145/2; -520; -935/2; -415; -725/2; -310; -515/2; -205; -305/2; -100; -95/2; 5; 115/2; 110; 325/2; 215...
$$a_{1} = - \frac{1565}{2}$$
$$a_{3} = - \frac{1355}{2}$$
$$a_{5} = - \frac{1145}{2}$$
$$a_{7} = - \frac{935}{2}$$
$$a_{9} = - \frac{725}{2}$$
$$a_{11} = - \frac{515}{2}$$
$$a_{13} = - \frac{305}{2}$$
$$a_{15} = - \frac{95}{2}$$
$$a_{17} = \frac{115}{2}$$
$$a_{19} = \frac{325}{2}$$