Задача {an} — арифметическая про ... лен, если a1=312, a5= 288 (на арифметическую прогрессию)

Учитель очень удивится увидев твоё верное решение 😼

Решение

Вы ввели [src]
{an} - арифметическая прогрессия. найти 111-й член, если a1=312, a5= 288
Найдено в тексте задачи:
Первый член: a1 = 312
n-член an (n = 110 + 1 = 111)
Разность: d = ?
Другие члены: a1 = 312
a5 = 288
Пример: ?
Найти члены от 1 до 111
Решение [src]
    a_n - a_k
d = ---------
      n - k  
$$d = \frac{- a_{k} + a_{n}}{- k + n}$$
a_1 = a_n + d*(-1 + n)
$$a_{1} = a_{n} + d \left(n - 1\right)$$
            (-1 + n)*(a_n - a_k)
a_1 = a_n - --------------------
                   n - k        
$$a_{1} = a_{n} - \frac{\left(- a_{k} + a_{n}\right) \left(n - 1\right)}{- k + n}$$
    a_5 - a_1
d = ---------
        4    
$$d = \frac{- a_{1} + a_{5}}{4}$$
            a_5 - a_1  
a_1 = a_5 - ---------*3
                4      
$$a_{1} = a_{5} - \frac{- a_{1} + a_{5}}{4} \cdot 3$$
    288 - 312
d = ---------
        4    
$$d = \frac{-312 + 288}{4}$$
            288 - 312  
a_1 = 288 - ---------*4
                4      
$$a_{1} = \left(-1\right) \frac{-312 + 288}{4} \cdot 4 + 288$$
d = -6
$$d = -6$$
a_1 = 312
$$a_{1} = 312$$
Первый член [src]
a_1 = 312
$$a_{1} = 312$$
Разность [src]
d = -6
$$d = -6$$
Пример [src]
...
Расширенный пример:
312; 306; 300; 294; 288; 282; 276; 270; 264; 258; 252; 246; 240; 234; 228; 222; 216; 210; 204; 198; 192; 186; 180; 174; 168; 162; 156; 150; 144; 138; 132; 126; 120; 114; 108; 102; 96; 90; 84; 78; 72; 66; 60; 54; 48; 42; 36; 30; 24; 18; 12; 6; 0; -6; -12; -18; -24; -30; -36; -42; -48; -54; -60; -66; -72; -78; -84; -90; -96; -102; -108; -114; -120; -126; -132; -138; -144; -150; -156; -162; -168; -174; -180; -186; -192; -198; -204; -210; -216; -222; -228; -234; -240; -246; -252; -258; -264; -270; -276; -282; -288; -294; -300; -306; -312; -318; -324; -330; -336; -342; -348...
a1 = 312
$$a_{1} = 312$$
a2 = 306
$$a_{2} = 306$$
a3 = 300
$$a_{3} = 300$$
a4 = 294
$$a_{4} = 294$$
a5 = 288
$$a_{5} = 288$$
a6 = 282
$$a_{6} = 282$$
a7 = 276
$$a_{7} = 276$$
a8 = 270
$$a_{8} = 270$$
a9 = 264
$$a_{9} = 264$$
a10 = 258
$$a_{10} = 258$$
a11 = 252
$$a_{11} = 252$$
a12 = 246
$$a_{12} = 246$$
a13 = 240
$$a_{13} = 240$$
a14 = 234
$$a_{14} = 234$$
a15 = 228
$$a_{15} = 228$$
a16 = 222
$$a_{16} = 222$$
a17 = 216
$$a_{17} = 216$$
a18 = 210
$$a_{18} = 210$$
a19 = 204
$$a_{19} = 204$$
a20 = 198
$$a_{20} = 198$$
a21 = 192
$$a_{21} = 192$$
a22 = 186
$$a_{22} = 186$$
a23 = 180
$$a_{23} = 180$$
a24 = 174
$$a_{24} = 174$$
a25 = 168
$$a_{25} = 168$$
a26 = 162
$$a_{26} = 162$$
a27 = 156
$$a_{27} = 156$$
a28 = 150
$$a_{28} = 150$$
a29 = 144
$$a_{29} = 144$$
a30 = 138
$$a_{30} = 138$$
a31 = 132
$$a_{31} = 132$$
a32 = 126
$$a_{32} = 126$$
a33 = 120
$$a_{33} = 120$$
a34 = 114
$$a_{34} = 114$$
a35 = 108
$$a_{35} = 108$$
a36 = 102
$$a_{36} = 102$$
a37 = 96
$$a_{37} = 96$$
a38 = 90
$$a_{38} = 90$$
a39 = 84
$$a_{39} = 84$$
a40 = 78
$$a_{40} = 78$$
a41 = 72
$$a_{41} = 72$$
a42 = 66
$$a_{42} = 66$$
a43 = 60
$$a_{43} = 60$$
a44 = 54
$$a_{44} = 54$$
a45 = 48
$$a_{45} = 48$$
a46 = 42
$$a_{46} = 42$$
a47 = 36
$$a_{47} = 36$$
a48 = 30
$$a_{48} = 30$$
a49 = 24
$$a_{49} = 24$$
a50 = 18
$$a_{50} = 18$$
a51 = 12
$$a_{51} = 12$$
a52 = 6
$$a_{52} = 6$$
a53 = 0
$$a_{53} = 0$$
a54 = -6
$$a_{54} = -6$$
a55 = -12
$$a_{55} = -12$$
a56 = -18
$$a_{56} = -18$$
a57 = -24
$$a_{57} = -24$$
a58 = -30
$$a_{58} = -30$$
a59 = -36
$$a_{59} = -36$$
a60 = -42
$$a_{60} = -42$$
a61 = -48
$$a_{61} = -48$$
a62 = -54
$$a_{62} = -54$$
a63 = -60
$$a_{63} = -60$$
a64 = -66
$$a_{64} = -66$$
a65 = -72
$$a_{65} = -72$$
a66 = -78
$$a_{66} = -78$$
a67 = -84
$$a_{67} = -84$$
a68 = -90
$$a_{68} = -90$$
a69 = -96
$$a_{69} = -96$$
a70 = -102
$$a_{70} = -102$$
a71 = -108
$$a_{71} = -108$$
a72 = -114
$$a_{72} = -114$$
a73 = -120
$$a_{73} = -120$$
a74 = -126
$$a_{74} = -126$$
a75 = -132
$$a_{75} = -132$$
a76 = -138
$$a_{76} = -138$$
a77 = -144
$$a_{77} = -144$$
a78 = -150
$$a_{78} = -150$$
a79 = -156
$$a_{79} = -156$$
a80 = -162
$$a_{80} = -162$$
a81 = -168
$$a_{81} = -168$$
a82 = -174
$$a_{82} = -174$$
a83 = -180
$$a_{83} = -180$$
a84 = -186
$$a_{84} = -186$$
a85 = -192
$$a_{85} = -192$$
a86 = -198
$$a_{86} = -198$$
a87 = -204
$$a_{87} = -204$$
a88 = -210
$$a_{88} = -210$$
a89 = -216
$$a_{89} = -216$$
a90 = -222
$$a_{90} = -222$$
a91 = -228
$$a_{91} = -228$$
a92 = -234
$$a_{92} = -234$$
a93 = -240
$$a_{93} = -240$$
a94 = -246
$$a_{94} = -246$$
a95 = -252
$$a_{95} = -252$$
a96 = -258
$$a_{96} = -258$$
a97 = -264
$$a_{97} = -264$$
a98 = -270
$$a_{98} = -270$$
a99 = -276
$$a_{99} = -276$$
a100 = -282
$$a_{100} = -282$$
a101 = -288
$$a_{101} = -288$$
a102 = -294
$$a_{102} = -294$$
a103 = -300
$$a_{103} = -300$$
a104 = -306
$$a_{104} = -306$$
a105 = -312
$$a_{105} = -312$$
a106 = -318
$$a_{106} = -318$$
a107 = -324
$$a_{107} = -324$$
a108 = -330
$$a_{108} = -330$$
a109 = -336
$$a_{109} = -336$$
a110 = -342
$$a_{110} = -342$$
a111 = -348
$$a_{111} = -348$$
...
Сумма [src]
    n*(a_1 + a_n)
S = -------------
          2      
$$S = \frac{n \left(a_{1} + a_{n}\right)}{2}$$
       111*(312 - 348)
S111 = ---------------
              2       
$$S_{111} = \frac{111 \left(-348 + 312\right)}{2}$$
S111 = -1998
$$S_{111} = -1998$$
n-член [src]
a_n = a_1 + d*(-1 + n)
$$a_{n} = a_{1} + d \left(n - 1\right)$$
a_111 = -348
$$a_{111} = -348$$