a_n - a_k
d = ---------
n - k $$d = \frac{- a_{k} + a_{n}}{- k + n}$$
$$a_{1} = a_{n} + d \left(n - 1\right)$$
(-1 + n)*(a_n - a_k)
a_1 = a_n - --------------------
n - k $$a_{1} = a_{n} - \frac{\left(- a_{k} + a_{n}\right) \left(n - 1\right)}{- k + n}$$
a_9 - a_5
d = ---------
4 $$d = \frac{- a_{5} + a_{9}}{4}$$
a_9 - a_5
a_1 = a_9 - ---------*7
4 $$a_{1} = a_{9} - \frac{- a_{5} + a_{9}}{4} \cdot 7$$
$$d = \frac{-16 + 28}{4}$$
28 - 16
a_1 = 28 - -------*8
4 $$a_{1} = \left(-1\right) \frac{-16 + 28}{4} \cdot 8 + 28$$
n*(a_1 + a_n)
S = -------------
2 $$S = \frac{n \left(a_{1} + a_{n}\right)}{2}$$
9*(4 + 28)
S9 = ----------
2 $$S_{9} = \frac{9 \cdot \left(4 + 28\right)}{2}$$