Задача Найди сумму первых шестна ... если a11=7,3 и a23=33,7 (на арифметическую прогрессию)

Учитель очень удивится увидев твоё верное решение 😼

Решение

Вы ввели [src]
Найди сумму первых шестнадцати членов арифметической прогрессии, если a11=7,3 и a23=33,7
Найдено в тексте задачи:
Первый член: a1 = ?
n-член an (n = 22 + 1 = 23)
Разность: d = ?
Другие члены: a11 = (73/10)
a23 = (337/10)
Пример: ?
Найти члены от 1 до 23
Решение [src]
    a_n - a_k
d = ---------
      n - k  
d=ak+ank+nd = \frac{- a_{k} + a_{n}}{- k + n}
a_1 = a_n + d*(-1 + n)
a1=an+d(n1)a_{1} = a_{n} + d \left(n - 1\right)
            (-1 + n)*(a_n - a_k)
a_1 = a_n - --------------------
                   n - k        
a1=an(ak+an)(n1)k+na_{1} = a_{n} - \frac{\left(- a_{k} + a_{n}\right) \left(n - 1\right)}{- k + n}
    a_23 - a_11
d = -----------
         12    
d=a11+a2312d = \frac{- a_{11} + a_{23}}{12}
             a_23 - a_11   
a_1 = a_23 - -----------*21
                  12       
a1=a2321a11+a2312a_{1} = a_{23} - 21 \frac{- a_{11} + a_{23}}{12}
    337   73
    --- - --
     10   10
d = --------
       12   
d=7310+3371012d = \frac{- \frac{73}{10} + \frac{337}{10}}{12}
            337   73   
            --- - --   
      337    10   10   
a_1 = --- - --------*22
       10      12      
a1=227310+3371012+33710a_{1} = - 22 \frac{- \frac{73}{10} + \frac{337}{10}}{12} + \frac{337}{10}
d = 11/5
d=115d = \frac{11}{5}
      -147 
a_1 = -----
        10 
a1=14710a_{1} = - \frac{147}{10}
Пример [src]
...
Расширенный пример:
-147/10; -25/2; -103/10; -81/10; -59/10; -37/10; -3/2; 7/10; 29/10; 51/10; 73/10; 19/2; 117/10; 139/10; 161/10; 183/10; 41/2; 227/10; 249/10; 271/10; 293/10; 63/2; 337/10...
     -147 
a1 = -----
       10 
a1=14710a_{1} = - \frac{147}{10}
a2 = -25/2
a2=252a_{2} = - \frac{25}{2}
     -103 
a3 = -----
       10 
a3=10310a_{3} = - \frac{103}{10}
     -81 
a4 = ----
      10 
a4=8110a_{4} = - \frac{81}{10}
     -59 
a5 = ----
      10 
a5=5910a_{5} = - \frac{59}{10}
     -37 
a6 = ----
      10 
a6=3710a_{6} = - \frac{37}{10}
a7 = -3/2
a7=32a_{7} = - \frac{3}{2}
a8 = 7/10
a8=710a_{8} = \frac{7}{10}
     29
a9 = --
     10
a9=2910a_{9} = \frac{29}{10}
      51
a10 = --
      10
a10=5110a_{10} = \frac{51}{10}
      73
a11 = --
      10
a11=7310a_{11} = \frac{73}{10}
a12 = 19/2
a12=192a_{12} = \frac{19}{2}
      117
a13 = ---
       10
a13=11710a_{13} = \frac{117}{10}
      139
a14 = ---
       10
a14=13910a_{14} = \frac{139}{10}
      161
a15 = ---
       10
a15=16110a_{15} = \frac{161}{10}
      183
a16 = ---
       10
a16=18310a_{16} = \frac{183}{10}
a17 = 41/2
a17=412a_{17} = \frac{41}{2}
      227
a18 = ---
       10
a18=22710a_{18} = \frac{227}{10}
      249
a19 = ---
       10
a19=24910a_{19} = \frac{249}{10}
      271
a20 = ---
       10
a20=27110a_{20} = \frac{271}{10}
      293
a21 = ---
       10
a21=29310a_{21} = \frac{293}{10}
a22 = 63/2
a22=632a_{22} = \frac{63}{2}
      337
a23 = ---
       10
a23=33710a_{23} = \frac{337}{10}
...
Разность [src]
d = 11/5
d=115d = \frac{11}{5}
Сумма [src]
    n*(a_1 + a_n)
S = -------------
          2      
S=n(a1+an)2S = \frac{n \left(a_{1} + a_{n}\right)}{2}
S23 = 437/2
S23=4372S_{23} = \frac{437}{2}
Первый член [src]
      -147 
a_1 = -----
        10 
a1=14710a_{1} = - \frac{147}{10}
n-член [src]
a_n = a_1 + d*(-1 + n)
an=a1+d(n1)a_{n} = a_{1} + d \left(n - 1\right)
       337
a_23 = ---
        10
a23=33710a_{23} = \frac{337}{10}