Задача В арифметической прогресс ... разность этой прогрессии. (на арифметическую прогрессию)

Учитель очень удивится увидев твоё верное решение 😼

Решение

Вы ввели [src]
в арифметической прогрессии первый член а1 = 7,5, s55 = 1650. определи
разность этой прогрессии.
Найдено в тексте задачи:
Первый член: a1 = (15/2)
n-член an (n = 54 + 1 = 55)
Разность: d = 2*((1650)/55-((15/2)))/(55-1)
Другие члены: a1 = (15/2)
Пример: ?
Найти члены от 1 до 55
Сумма [src]
    n*(a_1 + a_n)
S = -------------
          2      
S=n(a1+an)2S = \frac{n \left(a_{1} + a_{n}\right)}{2}
      55*(15/2 + 105/2)
S55 = -----------------
              2        
S55=55(152+1052)2S_{55} = \frac{55 \cdot \left(\frac{15}{2} + \frac{105}{2}\right)}{2}
S55 = 1650
S55=1650S_{55} = 1650
Разность [src]
$d = 2*(S_k / k - a_1) / (k - 1)
d=2(S55/55a1)/(551)d = 2*(S_55 / 55 - a_1) / (55 - 1)
d=2(S55/55a1)/55d = 2*(S_55 / 55 - a_1) / 55
подставляем
d=2((1650)/55(7,5))/(551)d = 2*((1650)/55 - (7,5)) / (55 - 1)
d = 5/6
d=56d = \frac{5}{6}
Пример [src]
...
Расширенный пример:
15/2; 25/3; 55/6; 10; 65/6; 35/3; 25/2; 40/3; 85/6; 15; 95/6; 50/3; 35/2; 55/3; 115/6; 20; 125/6; 65/3; 45/2; 70/3; 145/6; 25; 155/6; 80/3; 55/2; 85/3; 175/6; 30; 185/6; 95/3; 65/2; 100/3; 205/6; 35; 215/6; 110/3; 75/2; 115/3; 235/6; 40; 245/6; 125/3; 85/2; 130/3; 265/6; 45; 275/6; 140/3; 95/2; 145/3; 295/6; 50; 305/6; 155/3; 105/2...
a1 = 15/2
a1=152a_{1} = \frac{15}{2}
a2 = 25/3
a2=253a_{2} = \frac{25}{3}
a3 = 55/6
a3=556a_{3} = \frac{55}{6}
a4 = 10
a4=10a_{4} = 10
a5 = 65/6
a5=656a_{5} = \frac{65}{6}
a6 = 35/3
a6=353a_{6} = \frac{35}{3}
a7 = 25/2
a7=252a_{7} = \frac{25}{2}
a8 = 40/3
a8=403a_{8} = \frac{40}{3}
a9 = 85/6
a9=856a_{9} = \frac{85}{6}
a10 = 15
a10=15a_{10} = 15
a11 = 95/6
a11=956a_{11} = \frac{95}{6}
a12 = 50/3
a12=503a_{12} = \frac{50}{3}
a13 = 35/2
a13=352a_{13} = \frac{35}{2}
a14 = 55/3
a14=553a_{14} = \frac{55}{3}
a15 = 115/6
a15=1156a_{15} = \frac{115}{6}
a16 = 20
a16=20a_{16} = 20
a17 = 125/6
a17=1256a_{17} = \frac{125}{6}
a18 = 65/3
a18=653a_{18} = \frac{65}{3}
a19 = 45/2
a19=452a_{19} = \frac{45}{2}
a20 = 70/3
a20=703a_{20} = \frac{70}{3}
a21 = 145/6
a21=1456a_{21} = \frac{145}{6}
a22 = 25
a22=25a_{22} = 25
a23 = 155/6
a23=1556a_{23} = \frac{155}{6}
a24 = 80/3
a24=803a_{24} = \frac{80}{3}
a25 = 55/2
a25=552a_{25} = \frac{55}{2}
a26 = 85/3
a26=853a_{26} = \frac{85}{3}
a27 = 175/6
a27=1756a_{27} = \frac{175}{6}
a28 = 30
a28=30a_{28} = 30
a29 = 185/6
a29=1856a_{29} = \frac{185}{6}
a30 = 95/3
a30=953a_{30} = \frac{95}{3}
a31 = 65/2
a31=652a_{31} = \frac{65}{2}
a32 = 100/3
a32=1003a_{32} = \frac{100}{3}
a33 = 205/6
a33=2056a_{33} = \frac{205}{6}
a34 = 35
a34=35a_{34} = 35
a35 = 215/6
a35=2156a_{35} = \frac{215}{6}
a36 = 110/3
a36=1103a_{36} = \frac{110}{3}
a37 = 75/2
a37=752a_{37} = \frac{75}{2}
a38 = 115/3
a38=1153a_{38} = \frac{115}{3}
a39 = 235/6
a39=2356a_{39} = \frac{235}{6}
a40 = 40
a40=40a_{40} = 40
a41 = 245/6
a41=2456a_{41} = \frac{245}{6}
a42 = 125/3
a42=1253a_{42} = \frac{125}{3}
a43 = 85/2
a43=852a_{43} = \frac{85}{2}
a44 = 130/3
a44=1303a_{44} = \frac{130}{3}
a45 = 265/6
a45=2656a_{45} = \frac{265}{6}
a46 = 45
a46=45a_{46} = 45
a47 = 275/6
a47=2756a_{47} = \frac{275}{6}
a48 = 140/3
a48=1403a_{48} = \frac{140}{3}
a49 = 95/2
a49=952a_{49} = \frac{95}{2}
a50 = 145/3
a50=1453a_{50} = \frac{145}{3}
a51 = 295/6
a51=2956a_{51} = \frac{295}{6}
a52 = 50
a52=50a_{52} = 50
a53 = 305/6
a53=3056a_{53} = \frac{305}{6}
a54 = 155/3
a54=1553a_{54} = \frac{155}{3}
a55 = 105/2
a55=1052a_{55} = \frac{105}{2}
...
n-член [src]
a_n = a_1 + d*(-1 + n)
an=a1+d(n1)a_{n} = a_{1} + d \left(n - 1\right)
a_55 = 105/2
a55=1052a_{55} = \frac{105}{2}
Первый член [src]
a_1 = 15/2
a1=152a_{1} = \frac{15}{2}