Производная e^(3*x)*sin(sin(sin(x)))

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
 3*x                 
e   *sin(sin(sin(x)))
e3xsin(sin(sin(x)))e^{3 x} \sin{\left(\sin{\left(\sin{\left(x \right)} \right)} \right)}
d / 3*x                 \
--\e   *sin(sin(sin(x)))/
dx                       
ddxe3xsin(sin(sin(x)))\frac{d}{d x} e^{3 x} \sin{\left(\sin{\left(\sin{\left(x \right)} \right)} \right)}
Подробное решение
  1. Применяем правило производной умножения:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=e3xf{\left(x \right)} = e^{3 x}; найдём ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Заменим u=3xu = 3 x.

    2. Производная eue^{u} само оно.

    3. Затем примените цепочку правил. Умножим на ddx3x\frac{d}{d x} 3 x:

      1. Производная произведения константы на функцию есть произведение этой константы на производную данной функции.

        1. В силу правила, применим: xx получим 11

        Таким образом, в результате: 33

      В результате последовательности правил:

      3e3x3 e^{3 x}

    g(x)=sin(sin(sin(x)))g{\left(x \right)} = \sin{\left(\sin{\left(\sin{\left(x \right)} \right)} \right)}; найдём ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Заменим u=sin(sin(x))u = \sin{\left(\sin{\left(x \right)} \right)}.

    2. Производная синуса есть косинус:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Затем примените цепочку правил. Умножим на ddxsin(sin(x))\frac{d}{d x} \sin{\left(\sin{\left(x \right)} \right)}:

      1. Заменим u=sin(x)u = \sin{\left(x \right)}.

      2. Производная синуса есть косинус:

        ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

      3. Затем примените цепочку правил. Умножим на ddxsin(x)\frac{d}{d x} \sin{\left(x \right)}:

        1. Производная синуса есть косинус:

          ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

        В результате последовательности правил:

        cos(x)cos(sin(x))\cos{\left(x \right)} \cos{\left(\sin{\left(x \right)} \right)}

      В результате последовательности правил:

      cos(x)cos(sin(x))cos(sin(sin(x)))\cos{\left(x \right)} \cos{\left(\sin{\left(x \right)} \right)} \cos{\left(\sin{\left(\sin{\left(x \right)} \right)} \right)}

    В результате: 3e3xsin(sin(sin(x)))+e3xcos(x)cos(sin(x))cos(sin(sin(x)))3 e^{3 x} \sin{\left(\sin{\left(\sin{\left(x \right)} \right)} \right)} + e^{3 x} \cos{\left(x \right)} \cos{\left(\sin{\left(x \right)} \right)} \cos{\left(\sin{\left(\sin{\left(x \right)} \right)} \right)}

  2. Теперь упростим:

    (3sin(sin(sin(x)))+cos(x)cos(sin(x))cos(sin(sin(x))))e3x\left(3 \sin{\left(\sin{\left(\sin{\left(x \right)} \right)} \right)} + \cos{\left(x \right)} \cos{\left(\sin{\left(x \right)} \right)} \cos{\left(\sin{\left(\sin{\left(x \right)} \right)} \right)}\right) e^{3 x}


Ответ:

(3sin(sin(sin(x)))+cos(x)cos(sin(x))cos(sin(sin(x))))e3x\left(3 \sin{\left(\sin{\left(\sin{\left(x \right)} \right)} \right)} + \cos{\left(x \right)} \cos{\left(\sin{\left(x \right)} \right)} \cos{\left(\sin{\left(\sin{\left(x \right)} \right)} \right)}\right) e^{3 x}

График
02468-8-6-4-2-1010-2500000000000025000000000000
Первая производная [src]
   3*x                                                         3*x
3*e   *sin(sin(sin(x))) + cos(x)*cos(sin(x))*cos(sin(sin(x)))*e   
3e3xsin(sin(sin(x)))+e3xcos(x)cos(sin(x))cos(sin(sin(x)))3 e^{3 x} \sin{\left(\sin{\left(\sin{\left(x \right)} \right)} \right)} + e^{3 x} \cos{\left(x \right)} \cos{\left(\sin{\left(x \right)} \right)} \cos{\left(\sin{\left(\sin{\left(x \right)} \right)} \right)}
Вторая производная [src]
/                        2       2                               2                                                                                                              \  3*x
\9*sin(sin(sin(x))) - cos (x)*cos (sin(x))*sin(sin(sin(x))) - cos (x)*cos(sin(sin(x)))*sin(sin(x)) - cos(sin(x))*cos(sin(sin(x)))*sin(x) + 6*cos(x)*cos(sin(x))*cos(sin(sin(x)))/*e   
(sin(x)cos(sin(x))cos(sin(sin(x)))sin(sin(x))cos2(x)cos(sin(sin(x)))sin(sin(sin(x)))cos2(x)cos2(sin(x))+9sin(sin(sin(x)))+6cos(x)cos(sin(x))cos(sin(sin(x))))e3x\left(- \sin{\left(x \right)} \cos{\left(\sin{\left(x \right)} \right)} \cos{\left(\sin{\left(\sin{\left(x \right)} \right)} \right)} - \sin{\left(\sin{\left(x \right)} \right)} \cos^{2}{\left(x \right)} \cos{\left(\sin{\left(\sin{\left(x \right)} \right)} \right)} - \sin{\left(\sin{\left(\sin{\left(x \right)} \right)} \right)} \cos^{2}{\left(x \right)} \cos^{2}{\left(\sin{\left(x \right)} \right)} + 9 \sin{\left(\sin{\left(\sin{\left(x \right)} \right)} \right)} + 6 \cos{\left(x \right)} \cos{\left(\sin{\left(x \right)} \right)} \cos{\left(\sin{\left(\sin{\left(x \right)} \right)} \right)}\right) e^{3 x}
Третья производная [src]
/                      /                                   2       3                               2                                        2                                                                                2                                            \               2       2                                 2                                                                                                                 \  3*x
\27*sin(sin(sin(x))) + \-cos(sin(x))*cos(sin(sin(x))) - cos (x)*cos (sin(x))*cos(sin(sin(x))) - cos (x)*cos(sin(x))*cos(sin(sin(x))) + 3*cos (sin(x))*sin(x)*sin(sin(sin(x))) + 3*cos(sin(sin(x)))*sin(x)*sin(sin(x)) + 3*cos (x)*cos(sin(x))*sin(sin(x))*sin(sin(sin(x)))/*cos(x) - 9*cos (x)*cos (sin(x))*sin(sin(sin(x))) - 9*cos (x)*cos(sin(sin(x)))*sin(sin(x)) - 9*cos(sin(x))*cos(sin(sin(x)))*sin(x) + 27*cos(x)*cos(sin(x))*cos(sin(sin(x)))/*e   
((3sin(x)sin(sin(x))cos(sin(sin(x)))+3sin(x)sin(sin(sin(x)))cos2(sin(x))+3sin(sin(x))sin(sin(sin(x)))cos2(x)cos(sin(x))cos2(x)cos3(sin(x))cos(sin(sin(x)))cos2(x)cos(sin(x))cos(sin(sin(x)))cos(sin(x))cos(sin(sin(x))))cos(x)9sin(x)cos(sin(x))cos(sin(sin(x)))9sin(sin(x))cos2(x)cos(sin(sin(x)))9sin(sin(sin(x)))cos2(x)cos2(sin(x))+27sin(sin(sin(x)))+27cos(x)cos(sin(x))cos(sin(sin(x))))e3x\left(\left(3 \sin{\left(x \right)} \sin{\left(\sin{\left(x \right)} \right)} \cos{\left(\sin{\left(\sin{\left(x \right)} \right)} \right)} + 3 \sin{\left(x \right)} \sin{\left(\sin{\left(\sin{\left(x \right)} \right)} \right)} \cos^{2}{\left(\sin{\left(x \right)} \right)} + 3 \sin{\left(\sin{\left(x \right)} \right)} \sin{\left(\sin{\left(\sin{\left(x \right)} \right)} \right)} \cos^{2}{\left(x \right)} \cos{\left(\sin{\left(x \right)} \right)} - \cos^{2}{\left(x \right)} \cos^{3}{\left(\sin{\left(x \right)} \right)} \cos{\left(\sin{\left(\sin{\left(x \right)} \right)} \right)} - \cos^{2}{\left(x \right)} \cos{\left(\sin{\left(x \right)} \right)} \cos{\left(\sin{\left(\sin{\left(x \right)} \right)} \right)} - \cos{\left(\sin{\left(x \right)} \right)} \cos{\left(\sin{\left(\sin{\left(x \right)} \right)} \right)}\right) \cos{\left(x \right)} - 9 \sin{\left(x \right)} \cos{\left(\sin{\left(x \right)} \right)} \cos{\left(\sin{\left(\sin{\left(x \right)} \right)} \right)} - 9 \sin{\left(\sin{\left(x \right)} \right)} \cos^{2}{\left(x \right)} \cos{\left(\sin{\left(\sin{\left(x \right)} \right)} \right)} - 9 \sin{\left(\sin{\left(\sin{\left(x \right)} \right)} \right)} \cos^{2}{\left(x \right)} \cos^{2}{\left(\sin{\left(x \right)} \right)} + 27 \sin{\left(\sin{\left(\sin{\left(x \right)} \right)} \right)} + 27 \cos{\left(x \right)} \cos{\left(\sin{\left(x \right)} \right)} \cos{\left(\sin{\left(\sin{\left(x \right)} \right)} \right)}\right) e^{3 x}
График
Производная e^(3*x)*sin(sin(sin(x))) /media/krcore-image-pods/hash/derivative/0/0b/d7c37d87eff5f4f8fb2abd8f0f00e.png