Задача Найдите первый член арифм ... an), если a37=-152 a43=43 (на арифметическую прогрессию)

Учитель очень удивится увидев твоё верное решение 😼

Решение

Вы ввели [src]
Найдите первый член арифметической прогрессии (an), если a37=-152 a43=43
Найдено в тексте задачи:
Первый член: a1 = ?
n-член an (n = 42 + 1 = 43)
Разность: d = ?
Другие члены: a37 = -152
a43 = 43
Пример: ?
Найти члены от 1 до 43
Решение [src]
    a_n - a_k
d = ---------
      n - k  
d=ak+ank+nd = \frac{- a_{k} + a_{n}}{- k + n}
a_1 = a_n + d*(-1 + n)
a1=an+d(n1)a_{1} = a_{n} + d \left(n - 1\right)
            (-1 + n)*(a_n - a_k)
a_1 = a_n - --------------------
                   n - k        
a1=an(ak+an)(n1)k+na_{1} = a_{n} - \frac{\left(- a_{k} + a_{n}\right) \left(n - 1\right)}{- k + n}
    a_43 - a_37
d = -----------
         6     
d=a37+a436d = \frac{- a_{37} + a_{43}}{6}
             a_43 - a_37   
a_1 = a_43 - -----------*41
                  6        
a1=a4341a37+a436a_{1} = a_{43} - 41 \frac{- a_{37} + a_{43}}{6}
    43 + 152
d = --------
       6    
d=43+1526d = \frac{43 + 152}{6}
           43 + 152   
a_1 = 43 - --------*42
              6       
a1=4243+1526+43a_{1} = - 42 \frac{43 + 152}{6} + 43
d = 65/2
d=652d = \frac{65}{2}
a_1 = -1322
a1=1322a_{1} = -1322
Первый член [src]
a_1 = -1322
a1=1322a_{1} = -1322
Разность [src]
d = 65/2
d=652d = \frac{65}{2}
n-член [src]
a_n = a_1 + d*(-1 + n)
an=a1+d(n1)a_{n} = a_{1} + d \left(n - 1\right)
a_43 = 43
a43=43a_{43} = 43
Пример [src]
...
Расширенный пример:
-1322; -2579/2; -1257; -2449/2; -1192; -2319/2; -1127; -2189/2; -1062; -2059/2; -997; -1929/2; -932; -1799/2; -867; -1669/2; -802; -1539/2; -737; -1409/2; -672; -1279/2; -607; -1149/2; -542; -1019/2; -477; -889/2; -412; -759/2; -347; -629/2; -282; -499/2; -217; -369/2; -152; -239/2; -87; -109/2; -22; 21/2; 43...
a1 = -1322
a1=1322a_{1} = -1322
a2 = -2579/2
a2=25792a_{2} = - \frac{2579}{2}
a3 = -1257
a3=1257a_{3} = -1257
a4 = -2449/2
a4=24492a_{4} = - \frac{2449}{2}
a5 = -1192
a5=1192a_{5} = -1192
a6 = -2319/2
a6=23192a_{6} = - \frac{2319}{2}
a7 = -1127
a7=1127a_{7} = -1127
a8 = -2189/2
a8=21892a_{8} = - \frac{2189}{2}
a9 = -1062
a9=1062a_{9} = -1062
a10 = -2059/2
a10=20592a_{10} = - \frac{2059}{2}
a11 = -997
a11=997a_{11} = -997
a12 = -1929/2
a12=19292a_{12} = - \frac{1929}{2}
a13 = -932
a13=932a_{13} = -932
a14 = -1799/2
a14=17992a_{14} = - \frac{1799}{2}
a15 = -867
a15=867a_{15} = -867
a16 = -1669/2
a16=16692a_{16} = - \frac{1669}{2}
a17 = -802
a17=802a_{17} = -802
a18 = -1539/2
a18=15392a_{18} = - \frac{1539}{2}
a19 = -737
a19=737a_{19} = -737
a20 = -1409/2
a20=14092a_{20} = - \frac{1409}{2}
a21 = -672
a21=672a_{21} = -672
a22 = -1279/2
a22=12792a_{22} = - \frac{1279}{2}
a23 = -607
a23=607a_{23} = -607
a24 = -1149/2
a24=11492a_{24} = - \frac{1149}{2}
a25 = -542
a25=542a_{25} = -542
a26 = -1019/2
a26=10192a_{26} = - \frac{1019}{2}
a27 = -477
a27=477a_{27} = -477
a28 = -889/2
a28=8892a_{28} = - \frac{889}{2}
a29 = -412
a29=412a_{29} = -412
a30 = -759/2
a30=7592a_{30} = - \frac{759}{2}
a31 = -347
a31=347a_{31} = -347
a32 = -629/2
a32=6292a_{32} = - \frac{629}{2}
a33 = -282
a33=282a_{33} = -282
a34 = -499/2
a34=4992a_{34} = - \frac{499}{2}
a35 = -217
a35=217a_{35} = -217
a36 = -369/2
a36=3692a_{36} = - \frac{369}{2}
a37 = -152
a37=152a_{37} = -152
a38 = -239/2
a38=2392a_{38} = - \frac{239}{2}
a39 = -87
a39=87a_{39} = -87
a40 = -109/2
a40=1092a_{40} = - \frac{109}{2}
a41 = -22
a41=22a_{41} = -22
a42 = 21/2
a42=212a_{42} = \frac{21}{2}
a43 = 43
a43=43a_{43} = 43
...
Сумма [src]
    n*(a_1 + a_n)
S = -------------
          2      
S=n(a1+an)2S = \frac{n \left(a_{1} + a_{n}\right)}{2}
S43 = -54997/2
S43=549972S_{43} = - \frac{54997}{2}