sqrt(x+4)=x-2 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: sqrt(x+4)=x-2

    Решение

    Вы ввели [src]
      _______        
    \/ x + 4  = x - 2
    $$\sqrt{x + 4} = x - 2$$
    Подробное решение
    Дано уравнение
    $$\sqrt{x + 4} = x - 2$$
    $$\sqrt{x + 4} = x - 2$$
    Возведём обе части ур-ния в(о) 2-ую степень
    $$x + 4 = \left(x - 2\right)^{2}$$
    $$x + 4 = x^{2} - 4 x + 4$$
    Перенесём правую часть уравнения левую часть уравнения со знаком минус
    $$- x^{2} + 5 x = 0$$
    Это уравнение вида
    a*x^2 + b*x + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    $$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
    $$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    $$a = -1$$
    $$b = 5$$
    $$c = 0$$
    , то
    D = b^2 - 4 * a * c = 

    (5)^2 - 4 * (-1) * (0) = 25

    Т.к. D > 0, то уравнение имеет два корня.
    x1 = (-b + sqrt(D)) / (2*a)

    x2 = (-b - sqrt(D)) / (2*a)

    или
    $$x_{1} = 0$$
    Упростить
    $$x_{2} = 5$$
    Упростить

    Т.к.
    $$\sqrt{x + 4} = x - 2$$
    и
    $$\sqrt{x + 4} \geq 0$$
    то
    $$x - 2 \geq 0$$
    или
    $$2 \leq x$$
    $$x < \infty$$
    Тогда, окончательный ответ:
    $$x_{2} = 5$$
    График
    Быстрый ответ [src]
    x1 = 5
    $$x_{1} = 5$$
    Сумма и произведение корней [src]
    сумма
    0 + 5
    $$0 + 5$$
    =
    5
    $$5$$
    произведение
    1*5
    $$1 \cdot 5$$
    =
    5
    $$5$$
    Численный ответ [src]
    x1 = 5.0
    График
    sqrt(x+4)=x-2 (уравнение) /media/krcore-image-pods/hash/equation/8/20/fbbb3e7eab9b642f8500869603575.png