6*cos^2(x)+13*sin(x)-8=0 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: 6*cos^2(x)+13*sin(x)-8=0

    Решение

    Вы ввели [src]
         2                       
    6*cos (x) + 13*sin(x) - 8 = 0
    13sin(x)+6cos2(x)8=013 \sin{\left(x \right)} + 6 \cos^{2}{\left(x \right)} - 8 = 0
    Подробное решение
    Дано уравнение
    13sin(x)+6cos2(x)8=013 \sin{\left(x \right)} + 6 \cos^{2}{\left(x \right)} - 8 = 0
    преобразуем
    6sin2(x)+13sin(x)2=0- 6 \sin^{2}{\left(x \right)} + 13 \sin{\left(x \right)} - 2 = 0
    6sin2(x)+13sin(x)8+6=0- 6 \sin^{2}{\left(x \right)} + 13 \sin{\left(x \right)} - 8 + 6 = 0
    Сделаем замену
    w=sin(x)w = \sin{\left(x \right)}
    Это уравнение вида
    a*w^2 + b*w + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    w1=Db2aw_{1} = \frac{\sqrt{D} - b}{2 a}
    w2=Db2aw_{2} = \frac{- \sqrt{D} - b}{2 a}
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    a=6a = -6
    b=13b = 13
    c=2c = -2
    , то
    D = b^2 - 4 * a * c = 

    (13)^2 - 4 * (-6) * (-2) = 121

    Т.к. D > 0, то уравнение имеет два корня.
    w1 = (-b + sqrt(D)) / (2*a)

    w2 = (-b - sqrt(D)) / (2*a)

    или
    w1=16w_{1} = \frac{1}{6}
    Упростить
    w2=2w_{2} = 2
    Упростить
    делаем обратную замену
    sin(x)=w\sin{\left(x \right)} = w
    Дано уравнение
    sin(x)=w\sin{\left(x \right)} = w
    - это простейшее тригонометрическое ур-ние
    Это ур-ние преобразуется в
    x=2πn+asin(w)x = 2 \pi n + \operatorname{asin}{\left(w \right)}
    x=2πnasin(w)+πx = 2 \pi n - \operatorname{asin}{\left(w \right)} + \pi
    Или
    x=2πn+asin(w)x = 2 \pi n + \operatorname{asin}{\left(w \right)}
    x=2πnasin(w)+πx = 2 \pi n - \operatorname{asin}{\left(w \right)} + \pi
    , где n - любое целое число
    подставляем w:
    x1=2πn+asin(w1)x_{1} = 2 \pi n + \operatorname{asin}{\left(w_{1} \right)}
    x1=2πn+asin(16)x_{1} = 2 \pi n + \operatorname{asin}{\left(\frac{1}{6} \right)}
    x1=2πn+asin(16)x_{1} = 2 \pi n + \operatorname{asin}{\left(\frac{1}{6} \right)}
    x2=2πn+asin(w2)x_{2} = 2 \pi n + \operatorname{asin}{\left(w_{2} \right)}
    x2=2πn+asin(2)x_{2} = 2 \pi n + \operatorname{asin}{\left(2 \right)}
    x2=2πn+asin(2)x_{2} = 2 \pi n + \operatorname{asin}{\left(2 \right)}
    x3=2πnasin(w1)+πx_{3} = 2 \pi n - \operatorname{asin}{\left(w_{1} \right)} + \pi
    x3=2πnasin(16)+πx_{3} = 2 \pi n - \operatorname{asin}{\left(\frac{1}{6} \right)} + \pi
    x3=2πnasin(16)+πx_{3} = 2 \pi n - \operatorname{asin}{\left(\frac{1}{6} \right)} + \pi
    x4=2πnasin(w2)+πx_{4} = 2 \pi n - \operatorname{asin}{\left(w_{2} \right)} + \pi
    x4=2πn+πasin(2)x_{4} = 2 \pi n + \pi - \operatorname{asin}{\left(2 \right)}
    x4=2πn+πasin(2)x_{4} = 2 \pi n + \pi - \operatorname{asin}{\left(2 \right)}
    График
    0-80-60-40-2020406080-100100-2525
    Быстрый ответ [src]
             /    /        ___\\         /    /        ___\\
             |    |1   I*\/ 3 ||         |    |1   I*\/ 3 ||
    x1 = 2*re|atan|- - -------|| + 2*I*im|atan|- - -------||
             \    \2      2   //         \    \2      2   //
    x1=2re(atan(123i2))+2iim(atan(123i2))x_{1} = 2 \operatorname{re}{\left(\operatorname{atan}{\left(\frac{1}{2} - \frac{\sqrt{3} i}{2} \right)}\right)} + 2 i \operatorname{im}{\left(\operatorname{atan}{\left(\frac{1}{2} - \frac{\sqrt{3} i}{2} \right)}\right)}
             /    /        ___\\         /    /        ___\\
             |    |1   I*\/ 3 ||         |    |1   I*\/ 3 ||
    x2 = 2*re|atan|- + -------|| + 2*I*im|atan|- + -------||
             \    \2      2   //         \    \2      2   //
    x2=2re(atan(12+3i2))+2iim(atan(12+3i2))x_{2} = 2 \operatorname{re}{\left(\operatorname{atan}{\left(\frac{1}{2} + \frac{\sqrt{3} i}{2} \right)}\right)} + 2 i \operatorname{im}{\left(\operatorname{atan}{\left(\frac{1}{2} + \frac{\sqrt{3} i}{2} \right)}\right)}
               /      ____\
    x3 = 2*atan\6 - \/ 35 /
    x3=2atan(635)x_{3} = 2 \operatorname{atan}{\left(6 - \sqrt{35} \right)}
               /      ____\
    x4 = 2*atan\6 + \/ 35 /
    x4=2atan(35+6)x_{4} = 2 \operatorname{atan}{\left(\sqrt{35} + 6 \right)}
    Сумма и произведение корней [src]
    сумма
            /    /        ___\\         /    /        ___\\       /    /        ___\\         /    /        ___\\                                          
            |    |1   I*\/ 3 ||         |    |1   I*\/ 3 ||       |    |1   I*\/ 3 ||         |    |1   I*\/ 3 ||         /      ____\         /      ____\
    0 + 2*re|atan|- - -------|| + 2*I*im|atan|- - -------|| + 2*re|atan|- + -------|| + 2*I*im|atan|- + -------|| + 2*atan\6 - \/ 35 / + 2*atan\6 + \/ 35 /
            \    \2      2   //         \    \2      2   //       \    \2      2   //         \    \2      2   //                                          
    2atan(35+6)+(2atan(635)+((0+(2re(atan(123i2))+2iim(atan(123i2))))+(2re(atan(12+3i2))+2iim(atan(12+3i2)))))2 \operatorname{atan}{\left(\sqrt{35} + 6 \right)} + \left(2 \operatorname{atan}{\left(6 - \sqrt{35} \right)} + \left(\left(0 + \left(2 \operatorname{re}{\left(\operatorname{atan}{\left(\frac{1}{2} - \frac{\sqrt{3} i}{2} \right)}\right)} + 2 i \operatorname{im}{\left(\operatorname{atan}{\left(\frac{1}{2} - \frac{\sqrt{3} i}{2} \right)}\right)}\right)\right) + \left(2 \operatorname{re}{\left(\operatorname{atan}{\left(\frac{1}{2} + \frac{\sqrt{3} i}{2} \right)}\right)} + 2 i \operatorname{im}{\left(\operatorname{atan}{\left(\frac{1}{2} + \frac{\sqrt{3} i}{2} \right)}\right)}\right)\right)\right)
    =
                                                  /    /        ___\\       /    /        ___\\         /    /        ___\\         /    /        ___\\
          /      ____\         /      ____\       |    |1   I*\/ 3 ||       |    |1   I*\/ 3 ||         |    |1   I*\/ 3 ||         |    |1   I*\/ 3 ||
    2*atan\6 + \/ 35 / + 2*atan\6 - \/ 35 / + 2*re|atan|- + -------|| + 2*re|atan|- - -------|| + 2*I*im|atan|- + -------|| + 2*I*im|atan|- - -------||
                                                  \    \2      2   //       \    \2      2   //         \    \2      2   //         \    \2      2   //
    2atan(635)+2re(atan(12+3i2))+2re(atan(123i2))+2atan(35+6)+2iim(atan(123i2))+2iim(atan(12+3i2))2 \operatorname{atan}{\left(6 - \sqrt{35} \right)} + 2 \operatorname{re}{\left(\operatorname{atan}{\left(\frac{1}{2} + \frac{\sqrt{3} i}{2} \right)}\right)} + 2 \operatorname{re}{\left(\operatorname{atan}{\left(\frac{1}{2} - \frac{\sqrt{3} i}{2} \right)}\right)} + 2 \operatorname{atan}{\left(\sqrt{35} + 6 \right)} + 2 i \operatorname{im}{\left(\operatorname{atan}{\left(\frac{1}{2} - \frac{\sqrt{3} i}{2} \right)}\right)} + 2 i \operatorname{im}{\left(\operatorname{atan}{\left(\frac{1}{2} + \frac{\sqrt{3} i}{2} \right)}\right)}
    произведение
      /    /    /        ___\\         /    /        ___\\\ /    /    /        ___\\         /    /        ___\\\                                      
      |    |    |1   I*\/ 3 ||         |    |1   I*\/ 3 ||| |    |    |1   I*\/ 3 ||         |    |1   I*\/ 3 |||       /      ____\       /      ____\
    1*|2*re|atan|- - -------|| + 2*I*im|atan|- - -------|||*|2*re|atan|- + -------|| + 2*I*im|atan|- + -------|||*2*atan\6 - \/ 35 /*2*atan\6 + \/ 35 /
      \    \    \2      2   //         \    \2      2   /// \    \    \2      2   //         \    \2      2   ///                                      
    1(2re(atan(123i2))+2iim(atan(123i2)))(2re(atan(12+3i2))+2iim(atan(12+3i2)))2atan(635)2atan(35+6)1 \cdot \left(2 \operatorname{re}{\left(\operatorname{atan}{\left(\frac{1}{2} - \frac{\sqrt{3} i}{2} \right)}\right)} + 2 i \operatorname{im}{\left(\operatorname{atan}{\left(\frac{1}{2} - \frac{\sqrt{3} i}{2} \right)}\right)}\right) \left(2 \operatorname{re}{\left(\operatorname{atan}{\left(\frac{1}{2} + \frac{\sqrt{3} i}{2} \right)}\right)} + 2 i \operatorname{im}{\left(\operatorname{atan}{\left(\frac{1}{2} + \frac{\sqrt{3} i}{2} \right)}\right)}\right) 2 \operatorname{atan}{\left(6 - \sqrt{35} \right)} 2 \operatorname{atan}{\left(\sqrt{35} + 6 \right)}
    =
       /    /    /        ___\\     /    /        ___\\\ /    /    /        ___\\     /    /        ___\\\                                  
       |    |    |1   I*\/ 3 ||     |    |1   I*\/ 3 ||| |    |    |1   I*\/ 3 ||     |    |1   I*\/ 3 |||     /      ____\     /      ____\
    16*|I*im|atan|- + -------|| + re|atan|- + -------|||*|I*im|atan|- - -------|| + re|atan|- - -------|||*atan\6 + \/ 35 /*atan\6 - \/ 35 /
       \    \    \2      2   //     \    \2      2   /// \    \    \2      2   //     \    \2      2   ///                                  
    16(re(atan(123i2))+iim(atan(123i2)))(re(atan(12+3i2))+iim(atan(12+3i2)))atan(635)atan(35+6)16 \left(\operatorname{re}{\left(\operatorname{atan}{\left(\frac{1}{2} - \frac{\sqrt{3} i}{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{atan}{\left(\frac{1}{2} - \frac{\sqrt{3} i}{2} \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{atan}{\left(\frac{1}{2} + \frac{\sqrt{3} i}{2} \right)}\right)} + i \operatorname{im}{\left(\operatorname{atan}{\left(\frac{1}{2} + \frac{\sqrt{3} i}{2} \right)}\right)}\right) \operatorname{atan}{\left(6 - \sqrt{35} \right)} \operatorname{atan}{\left(\sqrt{35} + 6 \right)}
    Численный ответ [src]
    x1 = 15.5405151887293
    x2 = 100.698412994093
    x3 = 65.805997646166
    x4 = -43743.3686605051
    x5 = 56.716115843836
    x6 = 62.9993011510156
    x7 = -94.0803315284741
    x8 = -72.4240791117849
    x9 = -43.8148490710374
    x10 = 44.1497452294768
    x11 = -345.407743815658
    x12 = 0.167448079219689
    x13 = -56.3812196853966
    x14 = -81.5139609141149
    x15 = -91.2736350333237
    x16 = -110.123190954862
    x17 = -62.6644049925762
    x18 = 50.4329305366564
    x19 = 59.5228123389864
    x20 = 40.6732564174476
    x21 = -15.8754113471687
    x22 = 19.0170040007584
    x23 = -75.2307756069354
    x24 = -97.5568203405033
    x25 = 53.2396270318068
    x26 = 25.300189307938
    x27 = -47.2913378830666
    x28 = -41.008152575887
    x29 = -53.5745231902462
    x30 = -34.7249672687074
    x31 = 37.8665599222972
    x32 = 9.25732988154969
    x33 = -28.4417819615278
    x34 = -18.6821078423191
    x35 = 31.5833746151176
    x36 = -12.3989225351395
    x37 = 84.6555535677047
    x38 = -22.1585966543482
    x39 = 75.5656717653747
    x40 = 97.2219241820639
    x41 = 153.77059194668
    x42 = 46.9564417246272
    x43 = -84.9904497261441
    x44 = -87.7971462212945
    x45 = 138.397524837171
    x46 = 78.3723682605251
    x47 = 28.1068858030884
    x48 = -37.5316637638578
    x49 = -100.363516835654
    x50 = 69.2824864581951
    x51 = 88.1320423797339
    x52 = 119.547968915632
    x53 = -24.9652931494987
    x54 = -78.7072644189645
    x55 = -50.098034378217
    x56 = 72.0891829533456
    x57 = 21.8237004959089
    x58 = 81.8488570725543
    x59 = 34.390071110268
    x60 = -182.044925828988
    x61 = 90.9387388748843
    x62 = -3.30904073280948
    x63 = -59.8577084974258
    x64 = -31.2484784566782
    x65 = 6.45063338639928
    x66 = -66.1408938046053
    x67 = 94.4152276869135
    x68 = -68.9475902997558
    x69 = 2.9741445743701
    x70 = -6.1157372279599
    x71 = -9.59222603998907
    x72 = 12.7338186935789
    График
    6*cos^2(x)+13*sin(x)-8=0 (уравнение) /media/krcore-image-pods/hash/equation/9/0e/ec210a1a8d7efcf8300709a5d582d.png