sin(a+t)=sin(a) (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: sin(a+t)=sin(a)

    Решение

    Вы ввели [src]
    sin(a + t) = sin(a)
    $$\sin{\left(a + t \right)} = \sin{\left(a \right)}$$
    Подробное решение
    Дано уравнение
    $$\sin{\left(a + t \right)} = \sin{\left(a \right)}$$
    - это простейшее тригонометрическое ур-ние
    Это ур-ние преобразуется в
    $$a + t = 2 \pi n + \operatorname{asin}{\left(\sin{\left(a \right)} \right)}$$
    $$a + t = 2 \pi n - \operatorname{asin}{\left(\sin{\left(a \right)} \right)} + \pi$$
    Или
    $$a + t = 2 \pi n + \operatorname{asin}{\left(\sin{\left(a \right)} \right)}$$
    $$a + t = 2 \pi n - \operatorname{asin}{\left(\sin{\left(a \right)} \right)} + \pi$$
    , где n - любое целое число
    Перенесём
    $$a$$
    в правую часть ур-ния
    с противоположным знаком, итого:
    $$t = - a + 2 \pi n + \operatorname{asin}{\left(\sin{\left(a \right)} \right)}$$
    $$t = - a + 2 \pi n - \operatorname{asin}{\left(\sin{\left(a \right)} \right)} + \pi$$
    График
    Быстрый ответ [src]
    t1 = -re(a) + I*(-im(a) + im(asin(sin(a)))) + re(asin(sin(a)))
    $$t_{1} = i \left(- \operatorname{im}{\left(a\right)} + \operatorname{im}{\left(\operatorname{asin}{\left(\sin{\left(a \right)} \right)}\right)}\right) - \operatorname{re}{\left(a\right)} + \operatorname{re}{\left(\operatorname{asin}{\left(\sin{\left(a \right)} \right)}\right)}$$
    t2 = pi - re(a) - re(asin(sin(a))) + I*(-im(a) - im(asin(sin(a))))
    $$t_{2} = i \left(- \operatorname{im}{\left(a\right)} - \operatorname{im}{\left(\operatorname{asin}{\left(\sin{\left(a \right)} \right)}\right)}\right) - \operatorname{re}{\left(a\right)} - \operatorname{re}{\left(\operatorname{asin}{\left(\sin{\left(a \right)} \right)}\right)} + \pi$$
    Сумма и произведение корней [src]
    сумма
    -re(a) + I*(-im(a) + im(asin(sin(a)))) + re(asin(sin(a))) + pi - re(a) - re(asin(sin(a))) + I*(-im(a) - im(asin(sin(a))))
    $$\left(i \left(- \operatorname{im}{\left(a\right)} + \operatorname{im}{\left(\operatorname{asin}{\left(\sin{\left(a \right)} \right)}\right)}\right) - \operatorname{re}{\left(a\right)} + \operatorname{re}{\left(\operatorname{asin}{\left(\sin{\left(a \right)} \right)}\right)}\right) + \left(i \left(- \operatorname{im}{\left(a\right)} - \operatorname{im}{\left(\operatorname{asin}{\left(\sin{\left(a \right)} \right)}\right)}\right) - \operatorname{re}{\left(a\right)} - \operatorname{re}{\left(\operatorname{asin}{\left(\sin{\left(a \right)} \right)}\right)} + \pi\right)$$
    =
    pi - 2*re(a) + I*(-im(a) - im(asin(sin(a)))) + I*(-im(a) + im(asin(sin(a))))
    $$i \left(- \operatorname{im}{\left(a\right)} - \operatorname{im}{\left(\operatorname{asin}{\left(\sin{\left(a \right)} \right)}\right)}\right) + i \left(- \operatorname{im}{\left(a\right)} + \operatorname{im}{\left(\operatorname{asin}{\left(\sin{\left(a \right)} \right)}\right)}\right) - 2 \operatorname{re}{\left(a\right)} + \pi$$
    произведение
    (-re(a) + I*(-im(a) + im(asin(sin(a)))) + re(asin(sin(a))))*(pi - re(a) - re(asin(sin(a))) + I*(-im(a) - im(asin(sin(a)))))
    $$\left(i \left(- \operatorname{im}{\left(a\right)} + \operatorname{im}{\left(\operatorname{asin}{\left(\sin{\left(a \right)} \right)}\right)}\right) - \operatorname{re}{\left(a\right)} + \operatorname{re}{\left(\operatorname{asin}{\left(\sin{\left(a \right)} \right)}\right)}\right) \left(i \left(- \operatorname{im}{\left(a\right)} - \operatorname{im}{\left(\operatorname{asin}{\left(\sin{\left(a \right)} \right)}\right)}\right) - \operatorname{re}{\left(a\right)} - \operatorname{re}{\left(\operatorname{asin}{\left(\sin{\left(a \right)} \right)}\right)} + \pi\right)$$
    =
    (-re(asin(sin(a))) + I*(-im(asin(sin(a))) + im(a)) + re(a))*(-pi + I*(im(a) + im(asin(sin(a)))) + re(a) + re(asin(sin(a))))
    $$\left(i \left(\operatorname{im}{\left(a\right)} - \operatorname{im}{\left(\operatorname{asin}{\left(\sin{\left(a \right)} \right)}\right)}\right) + \operatorname{re}{\left(a\right)} - \operatorname{re}{\left(\operatorname{asin}{\left(\sin{\left(a \right)} \right)}\right)}\right) \left(i \left(\operatorname{im}{\left(a\right)} + \operatorname{im}{\left(\operatorname{asin}{\left(\sin{\left(a \right)} \right)}\right)}\right) + \operatorname{re}{\left(a\right)} + \operatorname{re}{\left(\operatorname{asin}{\left(\sin{\left(a \right)} \right)}\right)} - \pi\right)$$