sin^2x-3sinx+2=0 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: sin^2x-3sinx+2=0

    Решение

    Вы ввели [src]
       2                      
    sin (x) - 3*sin(x) + 2 = 0
    sin2(x)3sin(x)+2=0\sin^{2}{\left(x \right)} - 3 \sin{\left(x \right)} + 2 = 0
    Подробное решение
    Дано уравнение
    sin2(x)3sin(x)+2=0\sin^{2}{\left(x \right)} - 3 \sin{\left(x \right)} + 2 = 0
    преобразуем
    sin2(x)3sin(x)+2=0\sin^{2}{\left(x \right)} - 3 \sin{\left(x \right)} + 2 = 0
    (sin2(x)3sin(x)+2)+0=0\left(\sin^{2}{\left(x \right)} - 3 \sin{\left(x \right)} + 2\right) + 0 = 0
    Сделаем замену
    w=sin(x)w = \sin{\left(x \right)}
    Это уравнение вида
    a*w^2 + b*w + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    w1=Db2aw_{1} = \frac{\sqrt{D} - b}{2 a}
    w2=Db2aw_{2} = \frac{- \sqrt{D} - b}{2 a}
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    a=1a = 1
    b=3b = -3
    c=2c = 2
    , то
    D = b^2 - 4 * a * c = 

    (-3)^2 - 4 * (1) * (2) = 1

    Т.к. D > 0, то уравнение имеет два корня.
    w1 = (-b + sqrt(D)) / (2*a)

    w2 = (-b - sqrt(D)) / (2*a)

    или
    w1=2w_{1} = 2
    Упростить
    w2=1w_{2} = 1
    Упростить
    делаем обратную замену
    sin(x)=w\sin{\left(x \right)} = w
    Дано уравнение
    sin(x)=w\sin{\left(x \right)} = w
    - это простейшее тригонометрическое ур-ние
    Это ур-ние преобразуется в
    x=2πn+asin(w)x = 2 \pi n + \operatorname{asin}{\left(w \right)}
    x=2πnasin(w)+πx = 2 \pi n - \operatorname{asin}{\left(w \right)} + \pi
    Или
    x=2πn+asin(w)x = 2 \pi n + \operatorname{asin}{\left(w \right)}
    x=2πnasin(w)+πx = 2 \pi n - \operatorname{asin}{\left(w \right)} + \pi
    , где n - любое целое число
    подставляем w:
    x1=2πn+asin(w1)x_{1} = 2 \pi n + \operatorname{asin}{\left(w_{1} \right)}
    x1=2πn+asin(2)x_{1} = 2 \pi n + \operatorname{asin}{\left(2 \right)}
    x1=2πn+asin(2)x_{1} = 2 \pi n + \operatorname{asin}{\left(2 \right)}
    x2=2πn+asin(w2)x_{2} = 2 \pi n + \operatorname{asin}{\left(w_{2} \right)}
    x2=2πn+asin(1)x_{2} = 2 \pi n + \operatorname{asin}{\left(1 \right)}
    x2=2πn+π2x_{2} = 2 \pi n + \frac{\pi}{2}
    x3=2πnasin(w1)+πx_{3} = 2 \pi n - \operatorname{asin}{\left(w_{1} \right)} + \pi
    x3=2πn+πasin(2)x_{3} = 2 \pi n + \pi - \operatorname{asin}{\left(2 \right)}
    x3=2πn+πasin(2)x_{3} = 2 \pi n + \pi - \operatorname{asin}{\left(2 \right)}
    x4=2πnasin(w2)+πx_{4} = 2 \pi n - \operatorname{asin}{\left(w_{2} \right)} + \pi
    x4=2πnasin(1)+πx_{4} = 2 \pi n - \operatorname{asin}{\left(1 \right)} + \pi
    x4=2πn+π2x_{4} = 2 \pi n + \frac{\pi}{2}
    График
    0-80-60-40-2020406080-100100010
    Сумма и произведение корней [src]
    сумма
        pi                                                                 
    0 + -- + pi - re(asin(2)) - I*im(asin(2)) + I*im(asin(2)) + re(asin(2))
        2                                                                  
    (re(asin(2))+iim(asin(2)))(3π2+re(asin(2))+iim(asin(2)))\left(\operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right) - \left(- \frac{3 \pi}{2} + \operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right)
    =
    3*pi
    ----
     2  
    3π2\frac{3 \pi}{2}
    произведение
      pi                                                                 
    1*--*(pi - re(asin(2)) - I*im(asin(2)))*(I*im(asin(2)) + re(asin(2)))
      2                                                                  
    1π2(re(asin(2))+πiim(asin(2)))(re(asin(2))+iim(asin(2)))1 \frac{\pi}{2} \left(- \operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right)
    =
    -pi*(I*im(asin(2)) + re(asin(2)))*(-pi + I*im(asin(2)) + re(asin(2))) 
    ----------------------------------------------------------------------
                                      2                                   
    π(re(asin(2))+iim(asin(2)))(π+re(asin(2))+iim(asin(2)))2- \frac{\pi \left(\operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right) \left(- \pi + \operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right)}{2}
    Быстрый ответ [src]
         pi
    x1 = --
         2 
    x1=π2x_{1} = \frac{\pi}{2}
    x2 = pi - re(asin(2)) - I*im(asin(2))
    x2=re(asin(2))+πiim(asin(2))x_{2} = - \operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}
    x3 = I*im(asin(2)) + re(asin(2))
    x3=re(asin(2))+iim(asin(2))x_{3} = \operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}
    Численный ответ [src]
    x1 = -67.5442421763137
    x2 = -73.8274260609448
    x3 = 83.2522058456645
    x4 = -48.6946856448184
    x5 = -23.561945016053
    x6 = 26.7035385469741
    x7 = -29.8451300938139
    x8 = 20.4203521441984
    x9 = 32.9867236138576
    x10 = -10.9955735516589
    x11 = 1.57079700398873
    x12 = 64.4026481915252
    x13 = 51.8362789090115
    x14 = -98.9601691037059
    x15 = -4.71238848059836
    x16 = -4.71238970180774
    x17 = -92.6769845303487
    x18 = 76.9690195526133
    x19 = -86.3937989639545
    x20 = -10.9955747752993
    x21 = -61.2610571936019
    x22 = 14.1371682454946
    x23 = -17.2787601164358
    x24 = 95.8185771224127
    x25 = -86.3937977050157
    x26 = -36.1283142806347
    x27 = 95.8185760701987
    x28 = -42.4115005430641
    x29 = -48.6946868672216
    x30 = -80.1106114181945
    x31 = 102.101759965899
    x32 = 26.703537282924
    x33 = -23.5619437177603
    x34 = 45.5530925300164
    x35 = 58.1194653976648
    x36 = 70.6858340517028
    x37 = -54.9778707171509
    x38 = -29.8451314931042
    x39 = 7.85398046563447
    x40 = 45.553094091839
    x41 = 1.57079661901596
    x42 = -36.1283166952282
    x43 = -92.676982808917
    x44 = 58.1194643770702
    x45 = -54.9778719394428
    x46 = 64.4026493044641
    x47 = 89.5353911752829
    x48 = -92.6769840326577
    x49 = -17.2787586177095
    x50 = -73.8274286445858
    x51 = -325.154840065363
    x52 = 51.8362776268483
    x53 = -29.8451289073854
    x54 = -73.8274272794653
    x55 = 32.9867223887206
    x56 = 83.2522046289214
    x57 = 1.57079536523077
    x58 = -61.2610570407565
    x59 = 95.8185747883961
    x60 = -117.80972560988
    x61 = 14.1371656591617
    x62 = 45.5530937812277
    x63 = 64.4026506037314
    x64 = 20.4203534431639
    x65 = 83.2522058481918
    x66 = -42.4115017994301
    x67 = -36.1283154137715
    x68 = 14.1371671181822
    x69 = 7.85398174770883
    x70 = -23.561946075942
    x71 = 76.9690207793905
    x72 = 70.6858357115182
    x73 = -67.544243206816
    x74 = 1.57079785005069
    x75 = -98.9601678826108
    x76 = 58.1194628121746
    x77 = -67.544240879025
    x78 = 51.8362799897705
    x79 = 20.4203510568788
    x80 = 7.85398285538609
    x81 = -42.4115000881114
    x82 = -17.2787598788452
    x83 = 39.2699086837397
    x84 = -61.2610557825211
    x85 = -86.3937971842945
    x86 = 39.2699074635758
    x87 = 89.5353909435736
    x88 = 26.7035369653861
    x89 = 70.6858344445529
    x90 = -80.1106125755117
    x91 = 89.5353896949152
    x92 = -80.1106138557219
    График
    sin^2x-3sinx+2=0 (уравнение) /media/krcore-image-pods/hash/equation/f/a9/8cfc6a4ab1d43d8792b29da3e37f4.png