sin^2(x)+sin(x)-2=0 (уравнение) Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: sin^2(x)+sin(x)-2=0
Решение
Подробное решение
Дано уравнениеsin 2 ( x ) + sin ( x ) − 2 = 0 \sin^{2}{\left(x \right)} + \sin{\left(x \right)} - 2 = 0 sin 2 ( x ) + sin ( x ) − 2 = 0 преобразуемsin 2 ( x ) + sin ( x ) − 2 = 0 \sin^{2}{\left(x \right)} + \sin{\left(x \right)} - 2 = 0 sin 2 ( x ) + sin ( x ) − 2 = 0 ( sin 2 ( x ) + sin ( x ) − 2 ) + 0 = 0 \left(\sin^{2}{\left(x \right)} + \sin{\left(x \right)} - 2\right) + 0 = 0 ( sin 2 ( x ) + sin ( x ) − 2 ) + 0 = 0 Сделаем заменуw = sin ( x ) w = \sin{\left(x \right)} w = sin ( x ) Это уравнение видаa*w^2 + b*w + c = 0 Квадратное уравнение можно решить с помощью дискриминанта. Корни квадратного уравнения:w 1 = D − b 2 a w_{1} = \frac{\sqrt{D} - b}{2 a} w 1 = 2 a D − b w 2 = − D − b 2 a w_{2} = \frac{- \sqrt{D} - b}{2 a} w 2 = 2 a − D − b где D = b^2 - 4*a*c - это дискриминант. Т.к.a = 1 a = 1 a = 1 b = 1 b = 1 b = 1 c = − 2 c = -2 c = − 2 , тоD = b^2 - 4 * a * c = (1)^2 - 4 * (1) * (-2) = 9 Т.к. D > 0, то уравнение имеет два корня.w1 = (-b + sqrt(D)) / (2*a) w2 = (-b - sqrt(D)) / (2*a) илиw 1 = 1 w_{1} = 1 w 1 = 1 Упростить w 2 = − 2 w_{2} = -2 w 2 = − 2 Упростить делаем обратную заменуsin ( x ) = w \sin{\left(x \right)} = w sin ( x ) = w Дано уравнениеsin ( x ) = w \sin{\left(x \right)} = w sin ( x ) = w - это простейшее тригонометрическое ур-ние Это ур-ние преобразуется вx = 2 π n + asin ( w ) x = 2 \pi n + \operatorname{asin}{\left(w \right)} x = 2 πn + asin ( w ) x = 2 π n − asin ( w ) + π x = 2 \pi n - \operatorname{asin}{\left(w \right)} + \pi x = 2 πn − asin ( w ) + π Илиx = 2 π n + asin ( w ) x = 2 \pi n + \operatorname{asin}{\left(w \right)} x = 2 πn + asin ( w ) x = 2 π n − asin ( w ) + π x = 2 \pi n - \operatorname{asin}{\left(w \right)} + \pi x = 2 πn − asin ( w ) + π , где n - любое целое число подставляем w:x 1 = 2 π n + asin ( w 1 ) x_{1} = 2 \pi n + \operatorname{asin}{\left(w_{1} \right)} x 1 = 2 πn + asin ( w 1 ) x 1 = 2 π n + asin ( 1 ) x_{1} = 2 \pi n + \operatorname{asin}{\left(1 \right)} x 1 = 2 πn + asin ( 1 ) x 1 = 2 π n + π 2 x_{1} = 2 \pi n + \frac{\pi}{2} x 1 = 2 πn + 2 π x 2 = 2 π n + asin ( w 2 ) x_{2} = 2 \pi n + \operatorname{asin}{\left(w_{2} \right)} x 2 = 2 πn + asin ( w 2 ) x 2 = 2 π n + asin ( − 2 ) x_{2} = 2 \pi n + \operatorname{asin}{\left(-2 \right)} x 2 = 2 πn + asin ( − 2 ) x 2 = 2 π n − asin ( 2 ) x_{2} = 2 \pi n - \operatorname{asin}{\left(2 \right)} x 2 = 2 πn − asin ( 2 ) x 3 = 2 π n − asin ( w 1 ) + π x_{3} = 2 \pi n - \operatorname{asin}{\left(w_{1} \right)} + \pi x 3 = 2 πn − asin ( w 1 ) + π x 3 = 2 π n − asin ( 1 ) + π x_{3} = 2 \pi n - \operatorname{asin}{\left(1 \right)} + \pi x 3 = 2 πn − asin ( 1 ) + π x 3 = 2 π n + π 2 x_{3} = 2 \pi n + \frac{\pi}{2} x 3 = 2 πn + 2 π x 4 = 2 π n − asin ( w 2 ) + π x_{4} = 2 \pi n - \operatorname{asin}{\left(w_{2} \right)} + \pi x 4 = 2 πn − asin ( w 2 ) + π x 4 = 2 π n + π − asin ( − 2 ) x_{4} = 2 \pi n + \pi - \operatorname{asin}{\left(-2 \right)} x 4 = 2 πn + π − asin ( − 2 ) x 4 = 2 π n + π + asin ( 2 ) x_{4} = 2 \pi n + \pi + \operatorname{asin}{\left(2 \right)} x 4 = 2 πn + π + asin ( 2 )
График
0 -80 -60 -40 -20 20 40 60 80 -100 100 2.5 -2.5
x 1 = π 2 x_{1} = \frac{\pi}{2} x 1 = 2 π x2 = pi + I*im(asin(2)) + re(asin(2)) x 2 = re ( asin ( 2 ) ) + π + i im ( asin ( 2 ) ) x_{2} = \operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + \pi + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)} x 2 = re ( asin ( 2 ) ) + π + i im ( asin ( 2 ) ) x3 = -re(asin(2)) - I*im(asin(2)) x 3 = − re ( asin ( 2 ) ) − i im ( asin ( 2 ) ) x_{3} = - \operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} - i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)} x 3 = − re ( asin ( 2 ) ) − i im ( asin ( 2 ) )
Сумма и произведение корней
[src] pi
0 + -- + pi + I*im(asin(2)) + re(asin(2)) + -re(asin(2)) - I*im(asin(2))
2 ( ( 0 + π 2 ) + ( re ( asin ( 2 ) ) + π + i im ( asin ( 2 ) ) ) ) − ( re ( asin ( 2 ) ) + i im ( asin ( 2 ) ) ) \left(\left(0 + \frac{\pi}{2}\right) + \left(\operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + \pi + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right)\right) - \left(\operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right) ( ( 0 + 2 π ) + ( re ( asin ( 2 ) ) + π + i im ( asin ( 2 ) ) ) ) − ( re ( asin ( 2 ) ) + i im ( asin ( 2 ) ) ) pi
1*--*(pi + I*im(asin(2)) + re(asin(2)))*(-re(asin(2)) - I*im(asin(2)))
2 1 π 2 ( re ( asin ( 2 ) ) + π + i im ( asin ( 2 ) ) ) ( − re ( asin ( 2 ) ) − i im ( asin ( 2 ) ) ) 1 \frac{\pi}{2} \left(\operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + \pi + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right) \left(- \operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} - i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right) 1 2 π ( re ( asin ( 2 ) ) + π + i im ( asin ( 2 ) ) ) ( − re ( asin ( 2 ) ) − i im ( asin ( 2 ) ) ) -pi*(I*im(asin(2)) + re(asin(2)))*(pi + I*im(asin(2)) + re(asin(2)))
---------------------------------------------------------------------
2 − π ( re ( asin ( 2 ) ) + i im ( asin ( 2 ) ) ) ( re ( asin ( 2 ) ) + π + i im ( asin ( 2 ) ) ) 2 - \frac{\pi \left(\operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + \pi + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right)}{2} − 2 π ( re ( asin ( 2 ) ) + i im ( asin ( 2 ) ) ) ( re ( asin ( 2 ) ) + π + i im ( asin ( 2 ) ) )