sin^2(x)+sin(x)-2=0 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: sin^2(x)+sin(x)-2=0

    Решение

    Вы ввели [src]
       2                    
    sin (x) + sin(x) - 2 = 0
    sin2(x)+sin(x)2=0\sin^{2}{\left(x \right)} + \sin{\left(x \right)} - 2 = 0
    Подробное решение
    Дано уравнение
    sin2(x)+sin(x)2=0\sin^{2}{\left(x \right)} + \sin{\left(x \right)} - 2 = 0
    преобразуем
    sin2(x)+sin(x)2=0\sin^{2}{\left(x \right)} + \sin{\left(x \right)} - 2 = 0
    (sin2(x)+sin(x)2)+0=0\left(\sin^{2}{\left(x \right)} + \sin{\left(x \right)} - 2\right) + 0 = 0
    Сделаем замену
    w=sin(x)w = \sin{\left(x \right)}
    Это уравнение вида
    a*w^2 + b*w + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    w1=Db2aw_{1} = \frac{\sqrt{D} - b}{2 a}
    w2=Db2aw_{2} = \frac{- \sqrt{D} - b}{2 a}
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    a=1a = 1
    b=1b = 1
    c=2c = -2
    , то
    D = b^2 - 4 * a * c = 

    (1)^2 - 4 * (1) * (-2) = 9

    Т.к. D > 0, то уравнение имеет два корня.
    w1 = (-b + sqrt(D)) / (2*a)

    w2 = (-b - sqrt(D)) / (2*a)

    или
    w1=1w_{1} = 1
    Упростить
    w2=2w_{2} = -2
    Упростить
    делаем обратную замену
    sin(x)=w\sin{\left(x \right)} = w
    Дано уравнение
    sin(x)=w\sin{\left(x \right)} = w
    - это простейшее тригонометрическое ур-ние
    Это ур-ние преобразуется в
    x=2πn+asin(w)x = 2 \pi n + \operatorname{asin}{\left(w \right)}
    x=2πnasin(w)+πx = 2 \pi n - \operatorname{asin}{\left(w \right)} + \pi
    Или
    x=2πn+asin(w)x = 2 \pi n + \operatorname{asin}{\left(w \right)}
    x=2πnasin(w)+πx = 2 \pi n - \operatorname{asin}{\left(w \right)} + \pi
    , где n - любое целое число
    подставляем w:
    x1=2πn+asin(w1)x_{1} = 2 \pi n + \operatorname{asin}{\left(w_{1} \right)}
    x1=2πn+asin(1)x_{1} = 2 \pi n + \operatorname{asin}{\left(1 \right)}
    x1=2πn+π2x_{1} = 2 \pi n + \frac{\pi}{2}
    x2=2πn+asin(w2)x_{2} = 2 \pi n + \operatorname{asin}{\left(w_{2} \right)}
    x2=2πn+asin(2)x_{2} = 2 \pi n + \operatorname{asin}{\left(-2 \right)}
    x2=2πnasin(2)x_{2} = 2 \pi n - \operatorname{asin}{\left(2 \right)}
    x3=2πnasin(w1)+πx_{3} = 2 \pi n - \operatorname{asin}{\left(w_{1} \right)} + \pi
    x3=2πnasin(1)+πx_{3} = 2 \pi n - \operatorname{asin}{\left(1 \right)} + \pi
    x3=2πn+π2x_{3} = 2 \pi n + \frac{\pi}{2}
    x4=2πnasin(w2)+πx_{4} = 2 \pi n - \operatorname{asin}{\left(w_{2} \right)} + \pi
    x4=2πn+πasin(2)x_{4} = 2 \pi n + \pi - \operatorname{asin}{\left(-2 \right)}
    x4=2πn+π+asin(2)x_{4} = 2 \pi n + \pi + \operatorname{asin}{\left(2 \right)}
    График
    0-80-60-40-2020406080-1001002.5-2.5
    Быстрый ответ [src]
         pi
    x1 = --
         2 
    x1=π2x_{1} = \frac{\pi}{2}
    x2 = pi + I*im(asin(2)) + re(asin(2))
    x2=re(asin(2))+π+iim(asin(2))x_{2} = \operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + \pi + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}
    x3 = -re(asin(2)) - I*im(asin(2))
    x3=re(asin(2))iim(asin(2))x_{3} = - \operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} - i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}
    Сумма и произведение корней [src]
    сумма
        pi                                                                  
    0 + -- + pi + I*im(asin(2)) + re(asin(2)) + -re(asin(2)) - I*im(asin(2))
        2                                                                   
    ((0+π2)+(re(asin(2))+π+iim(asin(2))))(re(asin(2))+iim(asin(2)))\left(\left(0 + \frac{\pi}{2}\right) + \left(\operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + \pi + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right)\right) - \left(\operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right)
    =
    3*pi
    ----
     2  
    3π2\frac{3 \pi}{2}
    произведение
      pi                                                                  
    1*--*(pi + I*im(asin(2)) + re(asin(2)))*(-re(asin(2)) - I*im(asin(2)))
      2                                                                   
    1π2(re(asin(2))+π+iim(asin(2)))(re(asin(2))iim(asin(2)))1 \frac{\pi}{2} \left(\operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + \pi + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right) \left(- \operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} - i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right)
    =
    -pi*(I*im(asin(2)) + re(asin(2)))*(pi + I*im(asin(2)) + re(asin(2))) 
    ---------------------------------------------------------------------
                                      2                                  
    π(re(asin(2))+iim(asin(2)))(re(asin(2))+π+iim(asin(2)))2- \frac{\pi \left(\operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{asin}{\left(2 \right)}\right)} + \pi + i \operatorname{im}{\left(\operatorname{asin}{\left(2 \right)}\right)}\right)}{2}
    Численный ответ [src]
    x1 = -29.845130096071
    x2 = 51.8362789010648
    x3 = -98.9601682955883
    x4 = 26.7035373376707
    x5 = 89.5353908670432
    x6 = -48.6946863938179
    x7 = -17.2787595558177
    x8 = 1.57079638821583
    x9 = 39.269908467403
    x10 = -92.6769829904857
    x11 = -80.1106125790894
    x12 = -98.9601688818699
    x13 = 32.9867231423258
    x14 = -4.71238925012177
    x15 = 70.6858346623542
    x16 = -17.2787598185623
    x17 = -92.6769835365305
    x18 = -2247.80954299513
    x19 = 64.40264930819
    x20 = -934.623813817357
    x21 = -14895.8615670421
    x22 = 20.4203525182045
    x23 = 76.969020286866
    x24 = -48.6946858375778
    x25 = 51.8362787709979
    x26 = 89.5353902626862
    x27 = -10.9955740029714
    x28 = -61.26105697461
    x29 = -42.4115007093557
    x30 = -117.809724108567
    x31 = -42.4115006012209
    x32 = 76.9690197275097
    x33 = -61.2610566723778
    x34 = -61.2610571370788
    x35 = 7.85398174142849
    x36 = 95.8185760603641
    x37 = -54.9778711489614
    x38 = 1.57079655506356
    x39 = 58.1194644186892
    x40 = -4.71238868494521
    x41 = 45.5530937111524
    x42 = -86.3937977576988
    x43 = 39.2699078944659
    x44 = -73.8274272799751
    x45 = -186.924763176023
    x46 = 32.9867225747057
    x47 = 45.5530931580187
    x48 = 14.1371671066768
    x49 = -36.1283154185983
    x50 = -86.3937977995351
    x51 = 102.101761823663
    x52 = -54.9778717299973
    x53 = -67.5442421686302
    x54 = 83.2522050398652
    x55 = 70.6858344940848
    x56 = 83.2522056194568
    x57 = 51.8362787447895
    x58 = 45.5530934923341
    x59 = 20.4203521490533
    x60 = 89.5353906021911
    x61 = -23.5619450098824
    x62 = -10.9955745778008
    x63 = 26.7035375559949
    График
    sin^2(x)+sin(x)-2=0 (уравнение) /media/krcore-image-pods/hash/equation/9/b7/fc9e90e7a2c73b6c4b3bdf0eb39f9.png