Найду корень уравнения: x²+4bx+16=0
a*x^2 + b*x + c = 0
D = b^2 - 4 * a * c =
(4*b)^2 - 4 * (1) * (16) = -64 + 16*b^2
x1 = (-b + sqrt(D)) / (2*a)
x2 = (-b - sqrt(D)) / (2*a)
/ ___________________________________________ \ ___________________________________________
| / 2 / / 2 2 \\| / 2 / / 2 2 \\
| 4 / / 2 2 \ 2 2 |atan2\2*im(b)*re(b), -4 + re (b) - im (b)/|| 4 / / 2 2 \ 2 2 |atan2\2*im(b)*re(b), -4 + re (b) - im (b)/|
x1 = -2*re(b) + I*|-2*im(b) - 2*\/ \-4 + re (b) - im (b)/ + 4*im (b)*re (b) *sin|------------------------------------------|| - 2*\/ \-4 + re (b) - im (b)/ + 4*im (b)*re (b) *cos|------------------------------------------|
\ \ 2 // \ 2 / / ___________________________________________ \ ___________________________________________
| / 2 / / 2 2 \\| / 2 / / 2 2 \\
| 4 / / 2 2 \ 2 2 |atan2\2*im(b)*re(b), -4 + re (b) - im (b)/|| 4 / / 2 2 \ 2 2 |atan2\2*im(b)*re(b), -4 + re (b) - im (b)/|
x2 = -2*re(b) + I*|-2*im(b) + 2*\/ \-4 + re (b) - im (b)/ + 4*im (b)*re (b) *sin|------------------------------------------|| + 2*\/ \-4 + re (b) - im (b)/ + 4*im (b)*re (b) *cos|------------------------------------------|
\ \ 2 // \ 2 /