x^2-4x=3√x^2-4x+20-10 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: x^2-4x=3√x^2-4x+20-10

    Решение

    Вы ввели [src]
                      2                
     2             ___                 
    x  - 4*x = 3*\/ x   - 4*x + 20 - 10
    x24x=3(x)24x10+20x^{2} - 4 x = 3 \left(\sqrt{x}\right)^{2} - 4 x - 10 + 20
    Подробное решение
    Перенесём правую часть уравнения в
    левую часть уравнения со знаком минус.

    Уравнение превратится из
    x24x=3(x)24x10+20x^{2} - 4 x = 3 \left(\sqrt{x}\right)^{2} - 4 x - 10 + 20
    в
    (x24x)+(3(x)2+4x20+10)=0\left(x^{2} - 4 x\right) + \left(- 3 \left(\sqrt{x}\right)^{2} + 4 x - 20 + 10\right) = 0
    Раскроем выражение в уравнении
    (x24x)+(3(x)2+4x20+10)=0\left(x^{2} - 4 x\right) + \left(- 3 \left(\sqrt{x}\right)^{2} + 4 x - 20 + 10\right) = 0
    Получаем квадратное уравнение
    x23x10=0x^{2} - 3 x - 10 = 0
    Это уравнение вида
    a*x^2 + b*x + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    x1=Db2ax_{1} = \frac{\sqrt{D} - b}{2 a}
    x2=Db2ax_{2} = \frac{- \sqrt{D} - b}{2 a}
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    a=1a = 1
    b=3b = -3
    c=10c = -10
    , то
    D = b^2 - 4 * a * c = 

    (-3)^2 - 4 * (1) * (-10) = 49

    Т.к. D > 0, то уравнение имеет два корня.
    x1 = (-b + sqrt(D)) / (2*a)

    x2 = (-b - sqrt(D)) / (2*a)

    или
    x1=5x_{1} = 5
    Упростить
    x2=2x_{2} = -2
    Упростить
    График
    -10.0-7.5-5.0-2.50.02.55.07.515.010.012.5-200200
    Быстрый ответ [src]
    x1 = -2
    x1=2x_{1} = -2
    x2 = 5
    x2=5x_{2} = 5
    Сумма и произведение корней [src]
    сумма
    0 - 2 + 5
    (2+0)+5\left(-2 + 0\right) + 5
    =
    3
    33
    произведение
    1*-2*5
    1(2)51 \left(-2\right) 5
    =
    -10
    10-10
    Теорема Виета
    это приведённое квадратное уравнение
    px+q+x2=0p x + q + x^{2} = 0
    где
    p=bap = \frac{b}{a}
    p=3p = -3
    q=caq = \frac{c}{a}
    q=10q = -10
    Формулы Виета
    x1+x2=px_{1} + x_{2} = - p
    x1x2=qx_{1} x_{2} = q
    x1+x2=3x_{1} + x_{2} = 3
    x1x2=10x_{1} x_{2} = -10
    Численный ответ [src]
    x1 = -2.0
    x2 = 5.0
    График
    x^2-4x=3√x^2-4x+20-10 (уравнение) /media/krcore-image-pods/hash/equation/5/6a/6a2e2653ed9182e7d3b8fd119a260.png