x(x^2+2x+1)=2(x+1) (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: x(x^2+2x+1)=2(x+1)

    Решение

    Вы ввели [src]
      / 2          \            
    x*\x  + 2*x + 1/ = 2*(x + 1)
    $$x \left(x^{2} + 2 x + 1\right) = 2 \left(x + 1\right)$$
    Подробное решение
    Дано уравнение:
    $$x \left(x^{2} + 2 x + 1\right) = 2 \left(x + 1\right)$$
    преобразуем:
    Вынесем общий множитель за скобки
    $$\left(x - 1\right) \left(x + 1\right) \left(x + 2\right) = 0$$
    Т.к. правая часть ур-ния равна нулю, то решение у ур-ния будет, если хотя бы один из множителей в левой части ур-ния равен нулю.
    Получим ур-ния
    $$x - 1 = 0$$
    $$x + 1 = 0$$
    $$x + 2 = 0$$
    решаем получившиеся ур-ния:
    1.
    $$x - 1 = 0$$
    Переносим свободные слагаемые (без x)
    из левой части в правую, получим:
    $$x = 1$$
    Получим ответ: x1 = 1
    2.
    $$x + 1 = 0$$
    Переносим свободные слагаемые (без x)
    из левой части в правую, получим:
    $$x = -1$$
    Получим ответ: x2 = -1
    3.
    $$x + 2 = 0$$
    Переносим свободные слагаемые (без x)
    из левой части в правую, получим:
    $$x = -2$$
    Получим ответ: x3 = -2
    Тогда, окончательный ответ:
    $$x_{1} = 1$$
    $$x_{2} = -1$$
    $$x_{3} = -2$$
    График
    Быстрый ответ [src]
    x1 = -2
    $$x_{1} = -2$$
    x2 = -1
    $$x_{2} = -1$$
    x3 = 1
    $$x_{3} = 1$$
    Сумма и произведение корней [src]
    сумма
    0 - 2 - 1 + 1
    $$\left(\left(-2 + 0\right) - 1\right) + 1$$
    =
    -2
    $$-2$$
    произведение
    1*-2*-1*1
    $$1 \left(-2\right) \left(-1\right) 1$$
    =
    2
    $$2$$
    Численный ответ [src]
    x1 = 1.0
    x2 = -1.0
    x3 = -2.0
    График
    x(x^2+2x+1)=2(x+1) (уравнение) /media/krcore-image-pods/hash/equation/e/d6/e6ac6bb235c0f7a9b53b4edfcef23.png