Есть несколько способов вычислить этот интеграл.
пусть .
Тогда пусть и подставим :
Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:
Интеграл есть когда :
Таким образом, результат будет:
Если сейчас заменить ещё в:
Перепишите подынтегральное выражение:
Интегрируем почленно:
Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:
Интеграл есть когда :
Таким образом, результат будет:
Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:
Интеграл есть когда :
Таким образом, результат будет:
Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:
Интеграл есть когда :
Таким образом, результат будет:
Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:
Интеграл есть когда :
Таким образом, результат будет:
Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:
Интеграл есть когда :
Таким образом, результат будет:
Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:
Интеграл есть когда :
Таким образом, результат будет:
Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:
Интеграл есть когда :
Таким образом, результат будет:
Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:
Интеграл есть когда :
Таким образом, результат будет:
Интеграл от константы есть эта константа, умноженная на переменную интегрирования:
Результат есть:
Теперь упростить:
Добавляем постоянную интегрирования:
Ответ:
1120386.77777778
/ | 9 | 8 (4*x - 7) | (4*x - 7) dx = C + ---------- | 36 /
![Найти интеграл от y = f(x) = (4*x-7)^8 dx ((4 умножить на х минус 7) в степени 8) - с подробным решением онлайн [Есть ответ!] Интеграл (4*x-7)^8 (dx) /media/krcore-image-pods/hash/indefinite/2/8f/1ba1e26bdcc06b92645f658a71a84.png](/media/krcore-image-pods/hash/indefinite/2/8f/1ba1e26bdcc06b92645f658a71a84.png)