Интеграл 2+x-x^2 (dx)

Преподаватель очень удивится увидев твоё верное решение 😼

d

↑ Введите нижнюю границу интеграла и верхнюю границу интеграла b, подинтегральную функцию f(x) - смотрите пример

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

    Решение

    Вы ввели [src]
      1                
      /                
     |                 
     |  /         2\   
     |  \2 + x - x / dx
     |                 
    /                  
    0                  
    $$\int_{0}^{1} - x^{2} + x + 2\, dx$$
    Подробное решение
    1. Интегрируем почленно:

      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

        1. Интеграл есть :

        Таким образом, результат будет:

      1. Интегрируем почленно:

        1. Интеграл есть :

        1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

        Результат есть:

      Результат есть:

    2. Теперь упростить:

    3. Добавляем постоянную интегрирования:


    Ответ:

    График
    Ответ [src]
      1                       
      /                       
     |                        
     |  /         2\          
     |  \2 + x - x / dx = 13/6
     |                        
    /                         
    0                         
    $${{13}\over{6}}$$
    Численный ответ [src]
    2.16666666666667
    Ответ (Неопределённый) [src]
      /                                   
     |                        2          3
     | /         2\          x          x 
     | \2 + x - x / dx = C + -- + 2*x - --
     |                       2          3 
    /                                     
    $$-{{x^3}\over{3}}+{{x^2}\over{2}}+2\,x$$