Интеграл 2+x-x^2 (dx)

Преподаватель очень удивится увидев твоё верное решение 😼

d

↑ Введите нижнюю границу интеграла и верхнюю границу интеграла b, подинтегральную функцию f(x) - смотрите пример

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

    Решение

    Вы ввели [src]
      1                
      /                
     |                 
     |  /         2\   
     |  \2 + x - x / dx
     |                 
    /                  
    0                  
    01x2+x+2dx\int_{0}^{1} - x^{2} + x + 2\, dx
    Подробное решение
    1. Интегрируем почленно:

      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

        x2dx=x2dx\int - x^{2}\, dx = - \int x^{2}\, dx

        1. Интеграл xnx^{n} есть xn+1n+1\frac{x^{n + 1}}{n + 1}:

          x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

        Таким образом, результат будет: x33- \frac{x^{3}}{3}

      1. Интегрируем почленно:

        1. Интеграл xnx^{n} есть xn+1n+1\frac{x^{n + 1}}{n + 1}:

          xdx=x22\int x\, dx = \frac{x^{2}}{2}

        1. Интеграл от константы есть эта константа, умноженная на переменную интегрирования:

          2dx=2x\int 2\, dx = 2 x

        Результат есть: x22+2x\frac{x^{2}}{2} + 2 x

      Результат есть: x33+x22+2x- \frac{x^{3}}{3} + \frac{x^{2}}{2} + 2 x

    2. Теперь упростить:

      x6(2x2+3x+12)\frac{x}{6} \left(- 2 x^{2} + 3 x + 12\right)

    3. Добавляем постоянную интегрирования:

      x6(2x2+3x+12)+constant\frac{x}{6} \left(- 2 x^{2} + 3 x + 12\right)+ \mathrm{constant}


    Ответ:

    x6(2x2+3x+12)+constant\frac{x}{6} \left(- 2 x^{2} + 3 x + 12\right)+ \mathrm{constant}

    График
    02468-8-6-4-2-1010-500500
    Ответ [src]
      1                       
      /                       
     |                        
     |  /         2\          
     |  \2 + x - x / dx = 13/6
     |                        
    /                         
    0                         
    136{{13}\over{6}}
    Численный ответ [src]
    2.16666666666667
    Ответ (Неопределённый) [src]
      /                                   
     |                        2          3
     | /         2\          x          x 
     | \2 + x - x / dx = C + -- + 2*x - --
     |                       2          3 
    /                                     
    x33+x22+2x-{{x^3}\over{3}}+{{x^2}\over{2}}+2\,x