Интеграл x-x (dx)

Преподаватель очень удивится увидев твоё верное решение 😼

d

↑ Введите нижнюю границу интеграла и верхнюю границу интеграла b, подинтегральную функцию f(x) - смотрите пример

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

    Решение

    Вы ввели [src]
      1           
      /           
     |            
     |  (x - x) dx
     |            
    /             
    0             
    01(x+x)dx\int\limits_{0}^{1} \left(- x + x\right)\, dx
    Подробное решение
    1. Интегрируем почленно:

      1. Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:

        (x)dx=xdx\int \left(- x\right)\, dx = - \int x\, dx

        1. Интеграл xnx^{n} есть xn+1n+1\frac{x^{n + 1}}{n + 1} когда n1n \neq -1:

          xdx=x22\int x\, dx = \frac{x^{2}}{2}

        Таким образом, результат будет: x22- \frac{x^{2}}{2}

      1. Интеграл xnx^{n} есть xn+1n+1\frac{x^{n + 1}}{n + 1} когда n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      Результат есть: 00


    Ответ:

    0+constant0+ \mathrm{constant}

    График
    0.001.000.100.200.300.400.500.600.700.800.9001
    Ответ [src]
    0
    00
    =
    =
    0
    00
    Численный ответ [src]
    0.0
    Ответ (Неопределённый) [src]
      /              
     |               
     | (x - x) dx = C
     |               
    /                
    (x+x)dx=C\int \left(- x + x\right)\, dx = C
    График
    Интеграл x-x (dx) /media/krcore-image-pods/hash/indefinite/6/e2/c64529685d1ed9800ec614af16f51.png