a_n - a_k
d = ---------
n - k $$d = \frac{- a_{k} + a_{n}}{- k + n}$$
$$a_{1} = a_{n} + d \left(n - 1\right)$$
(-1 + n)*(a_n - a_k)
a_1 = a_n - --------------------
n - k $$a_{1} = a_{n} - \frac{\left(- a_{k} + a_{n}\right) \left(n - 1\right)}{- k + n}$$
a_2 - a_1
d = ---------
1 $$d = \frac{- a_{1} + a_{2}}{1}$$
a_2 - a_1
a_1 = a_2 - ---------*0
1 $$a_{1} = a_{2} - \frac{- a_{1} + a_{2}}{1} \cdot 0$$
$$d = \frac{-12 + 9}{1}$$
9 - 12
a_1 = 9 - ------*1
1 $$a_{1} = \left(-1\right) \frac{-12 + 9}{1} \cdot 1 + 9$$
n*(a_1 + a_n)
S = -------------
2 $$S = \frac{n \left(a_{1} + a_{n}\right)}{2}$$
10*(12 - 15)
S10 = ------------
2 $$S_{10} = \frac{10 \left(-15 + 12\right)}{2}$$