Задача найди разность арифметиче ... ов прогрессии равна 418,8 (на арифметическую прогрессию)

Учитель очень удивится увидев твоё верное решение 😼

Решение

Вы ввели [src]
найди разность арифметической прогрессии, если а1=0,91, а сумма первых тридцати членов  прогрессии равна 418,8
Найдено в тексте задачи:
Первый член: a1 = (91/100)
n-член an (n = 29 + 1 = 30)
Разность: d = 2*(((2094/5))/30-((91/100)))/(30-1)
Другие члены: a1 = (91/100)
Пример: ?
Найти члены от 1 до 30
n-член [src]
Тридцатый член
a_n = a_1 + d*(-1 + n)
an=a1+d(n1)a_{n} = a_{1} + d \left(n - 1\right)
       2701
a_30 = ----
       100 
a30=2701100a_{30} = \frac{2701}{100}
Разность [src]
$d = 2*(S_k / k - a_1) / (k - 1)
d=2(S30/30a1)/(301)d = 2*(S_30 / 30 - a_1) / (30 - 1)
d=2(S30/30a1)/30d = 2*(S_30 / 30 - a_1) / 30
подставляем
d=2((418,8)/30(0,91))/(301)d = 2*((418,8)/30 - (0,91)) / (30 - 1)
d = 9/10
d=910d = \frac{9}{10}
Пример [src]
...
Расширенный пример:
91/100; 181/100; 271/100; 361/100; 451/100; 541/100; 631/100; 721/100; 811/100; 901/100; 991/100; 1081/100; 1171/100; 1261/100; 1351/100; 1441/100; 1531/100; 1621/100; 1711/100; 1801/100; 1891/100; 1981/100; 2071/100; 2161/100; 2251/100; 2341/100; 2431/100; 2521/100; 2611/100; 2701/100...
      91
a1 = ---
     100
a1=91100a_{1} = \frac{91}{100}
     181
a2 = ---
     100
a2=181100a_{2} = \frac{181}{100}
     271
a3 = ---
     100
a3=271100a_{3} = \frac{271}{100}
     361
a4 = ---
     100
a4=361100a_{4} = \frac{361}{100}
     451
a5 = ---
     100
a5=451100a_{5} = \frac{451}{100}
     541
a6 = ---
     100
a6=541100a_{6} = \frac{541}{100}
     631
a7 = ---
     100
a7=631100a_{7} = \frac{631}{100}
     721
a8 = ---
     100
a8=721100a_{8} = \frac{721}{100}
     811
a9 = ---
     100
a9=811100a_{9} = \frac{811}{100}
      901
a10 = ---
      100
a10=901100a_{10} = \frac{901}{100}
      991
a11 = ---
      100
a11=991100a_{11} = \frac{991}{100}
      1081
a12 = ----
      100 
a12=1081100a_{12} = \frac{1081}{100}
      1171
a13 = ----
      100 
a13=1171100a_{13} = \frac{1171}{100}
      1261
a14 = ----
      100 
a14=1261100a_{14} = \frac{1261}{100}
      1351
a15 = ----
      100 
a15=1351100a_{15} = \frac{1351}{100}
      1441
a16 = ----
      100 
a16=1441100a_{16} = \frac{1441}{100}
      1531
a17 = ----
      100 
a17=1531100a_{17} = \frac{1531}{100}
      1621
a18 = ----
      100 
a18=1621100a_{18} = \frac{1621}{100}
      1711
a19 = ----
      100 
a19=1711100a_{19} = \frac{1711}{100}
      1801
a20 = ----
      100 
a20=1801100a_{20} = \frac{1801}{100}
      1891
a21 = ----
      100 
a21=1891100a_{21} = \frac{1891}{100}
      1981
a22 = ----
      100 
a22=1981100a_{22} = \frac{1981}{100}
      2071
a23 = ----
      100 
a23=2071100a_{23} = \frac{2071}{100}
      2161
a24 = ----
      100 
a24=2161100a_{24} = \frac{2161}{100}
      2251
a25 = ----
      100 
a25=2251100a_{25} = \frac{2251}{100}
      2341
a26 = ----
      100 
a26=2341100a_{26} = \frac{2341}{100}
      2431
a27 = ----
      100 
a27=2431100a_{27} = \frac{2431}{100}
      2521
a28 = ----
      100 
a28=2521100a_{28} = \frac{2521}{100}
      2611
a29 = ----
      100 
a29=2611100a_{29} = \frac{2611}{100}
      2701
a30 = ----
      100 
a30=2701100a_{30} = \frac{2701}{100}
...
Первый член [src]
       91
a_1 = ---
      100
a1=91100a_{1} = \frac{91}{100}
Сумма [src]
    n*(a_1 + a_n)
S = -------------
          2      
S=n(a1+an)2S = \frac{n \left(a_{1} + a_{n}\right)}{2}
Сумма тридцати членов
         / 91   2701\
      30*|--- + ----|
         \100   100 /
S30 = ---------------
             2       
S30=30(91100+2701100)2S_{30} = \frac{30 \cdot \left(\frac{91}{100} + \frac{2701}{100}\right)}{2}
S30 = 2094/5
S30=20945S_{30} = \frac{2094}{5}