Задача найди a7,a22,a53,a111,ари ... сии (an),если a1=2,d=-2,2 (на арифметическую прогрессию)

Учитель очень удивится увидев твоё верное решение 😼

Решение

Вы ввели [src]
найди a7,a22,a53,a111,арифметической прогрессии (an),если a1=2,d=-2,2
Найдено в тексте задачи:
Первый член: a1 = 2
n-член an (n = 110 + 1 = 111)
Разность: d = -(11/5)
Другие члены: a1 = 2
Пример: ?
Найти члены от 1 до 111
Первый член [src]
a_1 = 2
a1=2a_{1} = 2
Разность [src]
d = -11/5
d=115d = - \frac{11}{5}
Пример [src]
...
Расширенный пример:
2; -1/5; -12/5; -23/5; -34/5; -9; -56/5; -67/5; -78/5; -89/5; -20; -111/5; -122/5; -133/5; -144/5; -31; -166/5; -177/5; -188/5; -199/5; -42; -221/5; -232/5; -243/5; -254/5; -53; -276/5; -287/5; -298/5; -309/5; -64; -331/5; -342/5; -353/5; -364/5; -75; -386/5; -397/5; -408/5; -419/5; -86; -441/5; -452/5; -463/5; -474/5; -97; -496/5; -507/5; -518/5; -529/5; -108; -551/5; -562/5; -573/5; -584/5; -119; -606/5; -617/5; -628/5; -639/5; -130; -661/5; -672/5; -683/5; -694/5; -141; -716/5; -727/5; -738/5; -749/5; -152; -771/5; -782/5; -793/5; -804/5; -163; -826/5; -837/5; -848/5; -859/5; -174; -881/5; -892/5; -903/5; -914/5; -185; -936/5; -947/5; -958/5; -969/5; -196; -991/5; -1002/5; -1013/5; -1024/5; -207; -1046/5; -1057/5; -1068/5; -1079/5; -218; -1101/5; -1112/5; -1123/5; -1134/5; -229; -1156/5; -1167/5; -1178/5; -1189/5; -240...
a1 = 2
a1=2a_{1} = 2
a2 = -1/5
a2=15a_{2} = - \frac{1}{5}
a3 = -12/5
a3=125a_{3} = - \frac{12}{5}
a4 = -23/5
a4=235a_{4} = - \frac{23}{5}
a5 = -34/5
a5=345a_{5} = - \frac{34}{5}
a6 = -9
a6=9a_{6} = -9
a7 = -56/5
a7=565a_{7} = - \frac{56}{5}
a8 = -67/5
a8=675a_{8} = - \frac{67}{5}
a9 = -78/5
a9=785a_{9} = - \frac{78}{5}
a10 = -89/5
a10=895a_{10} = - \frac{89}{5}
a11 = -20
a11=20a_{11} = -20
a12 = -111/5
a12=1115a_{12} = - \frac{111}{5}
a13 = -122/5
a13=1225a_{13} = - \frac{122}{5}
a14 = -133/5
a14=1335a_{14} = - \frac{133}{5}
a15 = -144/5
a15=1445a_{15} = - \frac{144}{5}
a16 = -31
a16=31a_{16} = -31
a17 = -166/5
a17=1665a_{17} = - \frac{166}{5}
a18 = -177/5
a18=1775a_{18} = - \frac{177}{5}
a19 = -188/5
a19=1885a_{19} = - \frac{188}{5}
a20 = -199/5
a20=1995a_{20} = - \frac{199}{5}
a21 = -42
a21=42a_{21} = -42
a22 = -221/5
a22=2215a_{22} = - \frac{221}{5}
a23 = -232/5
a23=2325a_{23} = - \frac{232}{5}
a24 = -243/5
a24=2435a_{24} = - \frac{243}{5}
a25 = -254/5
a25=2545a_{25} = - \frac{254}{5}
a26 = -53
a26=53a_{26} = -53
a27 = -276/5
a27=2765a_{27} = - \frac{276}{5}
a28 = -287/5
a28=2875a_{28} = - \frac{287}{5}
a29 = -298/5
a29=2985a_{29} = - \frac{298}{5}
a30 = -309/5
a30=3095a_{30} = - \frac{309}{5}
a31 = -64
a31=64a_{31} = -64
a32 = -331/5
a32=3315a_{32} = - \frac{331}{5}
a33 = -342/5
a33=3425a_{33} = - \frac{342}{5}
a34 = -353/5
a34=3535a_{34} = - \frac{353}{5}
a35 = -364/5
a35=3645a_{35} = - \frac{364}{5}
a36 = -75
a36=75a_{36} = -75
a37 = -386/5
a37=3865a_{37} = - \frac{386}{5}
a38 = -397/5
a38=3975a_{38} = - \frac{397}{5}
a39 = -408/5
a39=4085a_{39} = - \frac{408}{5}
a40 = -419/5
a40=4195a_{40} = - \frac{419}{5}
a41 = -86
a41=86a_{41} = -86
a42 = -441/5
a42=4415a_{42} = - \frac{441}{5}
a43 = -452/5
a43=4525a_{43} = - \frac{452}{5}
a44 = -463/5
a44=4635a_{44} = - \frac{463}{5}
a45 = -474/5
a45=4745a_{45} = - \frac{474}{5}
a46 = -97
a46=97a_{46} = -97
a47 = -496/5
a47=4965a_{47} = - \frac{496}{5}
a48 = -507/5
a48=5075a_{48} = - \frac{507}{5}
a49 = -518/5
a49=5185a_{49} = - \frac{518}{5}
a50 = -529/5
a50=5295a_{50} = - \frac{529}{5}
a51 = -108
a51=108a_{51} = -108
a52 = -551/5
a52=5515a_{52} = - \frac{551}{5}
a53 = -562/5
a53=5625a_{53} = - \frac{562}{5}
a54 = -573/5
a54=5735a_{54} = - \frac{573}{5}
a55 = -584/5
a55=5845a_{55} = - \frac{584}{5}
a56 = -119
a56=119a_{56} = -119
a57 = -606/5
a57=6065a_{57} = - \frac{606}{5}
a58 = -617/5
a58=6175a_{58} = - \frac{617}{5}
a59 = -628/5
a59=6285a_{59} = - \frac{628}{5}
a60 = -639/5
a60=6395a_{60} = - \frac{639}{5}
a61 = -130
a61=130a_{61} = -130
a62 = -661/5
a62=6615a_{62} = - \frac{661}{5}
a63 = -672/5
a63=6725a_{63} = - \frac{672}{5}
a64 = -683/5
a64=6835a_{64} = - \frac{683}{5}
a65 = -694/5
a65=6945a_{65} = - \frac{694}{5}
a66 = -141
a66=141a_{66} = -141
a67 = -716/5
a67=7165a_{67} = - \frac{716}{5}
a68 = -727/5
a68=7275a_{68} = - \frac{727}{5}
a69 = -738/5
a69=7385a_{69} = - \frac{738}{5}
a70 = -749/5
a70=7495a_{70} = - \frac{749}{5}
a71 = -152
a71=152a_{71} = -152
a72 = -771/5
a72=7715a_{72} = - \frac{771}{5}
a73 = -782/5
a73=7825a_{73} = - \frac{782}{5}
a74 = -793/5
a74=7935a_{74} = - \frac{793}{5}
a75 = -804/5
a75=8045a_{75} = - \frac{804}{5}
a76 = -163
a76=163a_{76} = -163
a77 = -826/5
a77=8265a_{77} = - \frac{826}{5}
a78 = -837/5
a78=8375a_{78} = - \frac{837}{5}
a79 = -848/5
a79=8485a_{79} = - \frac{848}{5}
a80 = -859/5
a80=8595a_{80} = - \frac{859}{5}
a81 = -174
a81=174a_{81} = -174
a82 = -881/5
a82=8815a_{82} = - \frac{881}{5}
a83 = -892/5
a83=8925a_{83} = - \frac{892}{5}
a84 = -903/5
a84=9035a_{84} = - \frac{903}{5}
a85 = -914/5
a85=9145a_{85} = - \frac{914}{5}
a86 = -185
a86=185a_{86} = -185
a87 = -936/5
a87=9365a_{87} = - \frac{936}{5}
a88 = -947/5
a88=9475a_{88} = - \frac{947}{5}
a89 = -958/5
a89=9585a_{89} = - \frac{958}{5}
a90 = -969/5
a90=9695a_{90} = - \frac{969}{5}
a91 = -196
a91=196a_{91} = -196
a92 = -991/5
a92=9915a_{92} = - \frac{991}{5}
a93 = -1002/5
a93=10025a_{93} = - \frac{1002}{5}
a94 = -1013/5
a94=10135a_{94} = - \frac{1013}{5}
a95 = -1024/5
a95=10245a_{95} = - \frac{1024}{5}
a96 = -207
a96=207a_{96} = -207
a97 = -1046/5
a97=10465a_{97} = - \frac{1046}{5}
a98 = -1057/5
a98=10575a_{98} = - \frac{1057}{5}
a99 = -1068/5
a99=10685a_{99} = - \frac{1068}{5}
a100 = -1079/5
a100=10795a_{100} = - \frac{1079}{5}
a101 = -218
a101=218a_{101} = -218
a102 = -1101/5
a102=11015a_{102} = - \frac{1101}{5}
a103 = -1112/5
a103=11125a_{103} = - \frac{1112}{5}
a104 = -1123/5
a104=11235a_{104} = - \frac{1123}{5}
a105 = -1134/5
a105=11345a_{105} = - \frac{1134}{5}
a106 = -229
a106=229a_{106} = -229
a107 = -1156/5
a107=11565a_{107} = - \frac{1156}{5}
a108 = -1167/5
a108=11675a_{108} = - \frac{1167}{5}
a109 = -1178/5
a109=11785a_{109} = - \frac{1178}{5}
a110 = -1189/5
a110=11895a_{110} = - \frac{1189}{5}
a111 = -240
a111=240a_{111} = -240
...
Сумма [src]
    n*(a_1 + a_n)
S = -------------
          2      
S=n(a1+an)2S = \frac{n \left(a_{1} + a_{n}\right)}{2}
       111*(2 - 240)
S111 = -------------
             2      
S111=111(240+2)2S_{111} = \frac{111 \left(-240 + 2\right)}{2}
S111 = -13209
S111=13209S_{111} = -13209
n-член [src]
a_n = a_1 + d*(-1 + n)
an=a1+d(n1)a_{n} = a_{1} + d \left(n - 1\right)
a_111 = -240
a111=240a_{111} = -240