5x^2-x-6 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: 5x^2-x-6

    Решение

    Вы ввели [src]
       2            
    5*x  - x - 6 = 0
    $$\left(5 x^{2} - x\right) - 6 = 0$$
    Подробное решение
    Это уравнение вида
    a*x^2 + b*x + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    $$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
    $$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    $$a = 5$$
    $$b = -1$$
    $$c = -6$$
    , то
    D = b^2 - 4 * a * c = 

    (-1)^2 - 4 * (5) * (-6) = 121

    Т.к. D > 0, то уравнение имеет два корня.
    x1 = (-b + sqrt(D)) / (2*a)

    x2 = (-b - sqrt(D)) / (2*a)

    или
    $$x_{1} = \frac{6}{5}$$
    $$x_{2} = -1$$
    График
    Быстрый ответ [src]
    x1 = -1
    $$x_{1} = -1$$
    x2 = 6/5
    $$x_{2} = \frac{6}{5}$$
    Численный ответ [src]
    x1 = 1.2
    x2 = -1.0
    График
    5x^2-x-6 (уравнение) /media/krcore-image-pods/hash/equation/b/15/a37beb8b1429a9c573b339396970e.png