Sin^2x-4sinx=0 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: Sin^2x-4sinx=0

    Решение

    Вы ввели [src]
       2                  
    sin (x) - 4*sin(x) = 0
    sin2(x)4sin(x)=0\sin^{2}{\left(x \right)} - 4 \sin{\left(x \right)} = 0
    Подробное решение
    Дано уравнение
    sin2(x)4sin(x)=0\sin^{2}{\left(x \right)} - 4 \sin{\left(x \right)} = 0
    преобразуем
    (sin(x)4)sin(x)=0\left(\sin{\left(x \right)} - 4\right) \sin{\left(x \right)} = 0
    (sin2(x)4sin(x))+0=0\left(\sin^{2}{\left(x \right)} - 4 \sin{\left(x \right)}\right) + 0 = 0
    Сделаем замену
    w=sin(x)w = \sin{\left(x \right)}
    Это уравнение вида
    a*w^2 + b*w + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    w1=Db2aw_{1} = \frac{\sqrt{D} - b}{2 a}
    w2=Db2aw_{2} = \frac{- \sqrt{D} - b}{2 a}
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    a=1a = 1
    b=4b = -4
    c=0c = 0
    , то
    D = b^2 - 4 * a * c = 

    (-4)^2 - 4 * (1) * (0) = 16

    Т.к. D > 0, то уравнение имеет два корня.
    w1 = (-b + sqrt(D)) / (2*a)

    w2 = (-b - sqrt(D)) / (2*a)

    или
    w1=4w_{1} = 4
    Упростить
    w2=0w_{2} = 0
    Упростить
    делаем обратную замену
    sin(x)=w\sin{\left(x \right)} = w
    Дано уравнение
    sin(x)=w\sin{\left(x \right)} = w
    - это простейшее тригонометрическое ур-ние
    Это ур-ние преобразуется в
    x=2πn+asin(w)x = 2 \pi n + \operatorname{asin}{\left(w \right)}
    x=2πnasin(w)+πx = 2 \pi n - \operatorname{asin}{\left(w \right)} + \pi
    Или
    x=2πn+asin(w)x = 2 \pi n + \operatorname{asin}{\left(w \right)}
    x=2πnasin(w)+πx = 2 \pi n - \operatorname{asin}{\left(w \right)} + \pi
    , где n - любое целое число
    подставляем w:
    x1=2πn+asin(w1)x_{1} = 2 \pi n + \operatorname{asin}{\left(w_{1} \right)}
    x1=2πn+asin(4)x_{1} = 2 \pi n + \operatorname{asin}{\left(4 \right)}
    x1=2πn+asin(4)x_{1} = 2 \pi n + \operatorname{asin}{\left(4 \right)}
    x2=2πn+asin(w2)x_{2} = 2 \pi n + \operatorname{asin}{\left(w_{2} \right)}
    x2=2πn+asin(0)x_{2} = 2 \pi n + \operatorname{asin}{\left(0 \right)}
    x2=2πnx_{2} = 2 \pi n
    x3=2πnasin(w1)+πx_{3} = 2 \pi n - \operatorname{asin}{\left(w_{1} \right)} + \pi
    x3=2πn+πasin(4)x_{3} = 2 \pi n + \pi - \operatorname{asin}{\left(4 \right)}
    x3=2πn+πasin(4)x_{3} = 2 \pi n + \pi - \operatorname{asin}{\left(4 \right)}
    x4=2πnasin(w2)+πx_{4} = 2 \pi n - \operatorname{asin}{\left(w_{2} \right)} + \pi
    x4=2πnasin(0)+πx_{4} = 2 \pi n - \operatorname{asin}{\left(0 \right)} + \pi
    x4=2πn+πx_{4} = 2 \pi n + \pi
    График
    0-80-60-40-2020406080-100100-1010
    Быстрый ответ [src]
    x1 = 0
    x1=0x_{1} = 0
    x2 = pi
    x2=πx_{2} = \pi
    x3 = pi - re(asin(4)) - I*im(asin(4))
    x3=re(asin(4))+πiim(asin(4))x_{3} = - \operatorname{re}{\left(\operatorname{asin}{\left(4 \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(4 \right)}\right)}
    x4 = I*im(asin(4)) + re(asin(4))
    x4=re(asin(4))+iim(asin(4))x_{4} = \operatorname{re}{\left(\operatorname{asin}{\left(4 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(4 \right)}\right)}
    Сумма и произведение корней [src]
    сумма
    0 + 0 + pi + pi - re(asin(4)) - I*im(asin(4)) + I*im(asin(4)) + re(asin(4))
    (re(asin(4))+iim(asin(4)))(2π+re(asin(4))+iim(asin(4)))\left(\operatorname{re}{\left(\operatorname{asin}{\left(4 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(4 \right)}\right)}\right) - \left(- 2 \pi + \operatorname{re}{\left(\operatorname{asin}{\left(4 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(4 \right)}\right)}\right)
    =
    2*pi
    2π2 \pi
    произведение
    1*0*pi*(pi - re(asin(4)) - I*im(asin(4)))*(I*im(asin(4)) + re(asin(4)))
    10π(re(asin(4))+πiim(asin(4)))(re(asin(4))+iim(asin(4)))1 \cdot 0 \pi \left(- \operatorname{re}{\left(\operatorname{asin}{\left(4 \right)}\right)} + \pi - i \operatorname{im}{\left(\operatorname{asin}{\left(4 \right)}\right)}\right) \left(\operatorname{re}{\left(\operatorname{asin}{\left(4 \right)}\right)} + i \operatorname{im}{\left(\operatorname{asin}{\left(4 \right)}\right)}\right)
    =
    0
    00
    Численный ответ [src]
    x1 = -100.530964914873
    x2 = -157.07963267949
    x3 = -78.5398163397448
    x4 = 97.3893722612836
    x5 = 18.8495559215388
    x6 = -94.2477796076938
    x7 = -65.9734457253857
    x8 = -56.5486677646163
    x9 = 56.5486677646163
    x10 = 6.28318530717959
    x11 = -69.1150383789755
    x12 = 78.5398163397448
    x13 = -3.14159265358979
    x14 = -21.9911485751286
    x15 = 81.6814089933346
    x16 = -91.106186954104
    x17 = -62.8318530717959
    x18 = -31.4159265358979
    x19 = 0.0
    x20 = 6270.61893656523
    x21 = 62.8318530717959
    x22 = 84.8230016469244
    x23 = 72.2566310325652
    x24 = 91.106186954104
    x25 = -18.8495559215388
    x26 = -9.42477796076938
    x27 = 28.2743338823081
    x28 = 471.238898038469
    x29 = 43.9822971502571
    x30 = -6.28318530717959
    x31 = -34.5575191894877
    x32 = -59.6902604182061
    x33 = -53.4070751110265
    x34 = 87.9645943005142
    x35 = 69.1150383789755
    x36 = -84.8230016469244
    x37 = -75.398223686155
    x38 = 75.398223686155
    x39 = 3.14159265358979
    x40 = -298.45130209103
    x41 = -37.6991118430775
    x42 = -115544.636206379
    x43 = 21.9911485751286
    x44 = 94.2477796076938
    x45 = -87.9645943005142
    x46 = -25.1327412287183
    x47 = 100.530964914873
    x48 = 50.2654824574367
    x49 = 1369.73439696515
    x50 = -43.9822971502571
    x51 = 65.9734457253857
    x52 = 9.42477796076938
    x53 = 40.8407044966673
    x54 = 37.6991118430775
    x55 = -28.2743338823081
    x56 = 53.4070751110265
    x57 = -40.8407044966673
    x58 = 47.1238898038469
    x59 = -50.2654824574367
    x60 = -97.3893722612836
    x61 = 15.707963267949
    x62 = 25.1327412287183
    x63 = -12.5663706143592
    x64 = 31.4159265358979
    x65 = 12.5663706143592
    x66 = 59.6902604182061
    x67 = -15.707963267949
    x68 = -81.6814089933346
    x69 = -72.2566310325652
    x70 = 34.5575191894877
    x71 = -47.1238898038469
    График
    Sin^2x-4sinx=0 (уравнение) /media/krcore-image-pods/hash/equation/2/c4/8902a9cd4a6a493b75cc3a3abec2d.png