Найду корень уравнения: (x-3)^2=y-1
a*x^2 + b*x + c = 0
D = b^2 - 4 * a * c =
(-6)^2 - 4 * (1) * (10 - y) = -4 + 4*y
x1 = (-b + sqrt(D)) / (2*a)
x2 = (-b - sqrt(D)) / (2*a)
________________________ ________________________
4 / 2 2 /atan2(im(y), -1 + re(y))\ 4 / 2 2 /atan2(im(y), -1 + re(y))\
x1 = 3 - \/ (-1 + re(y)) + im (y) *cos|------------------------| - I*\/ (-1 + re(y)) + im (y) *sin|------------------------|
\ 2 / \ 2 / ________________________ ________________________
4 / 2 2 /atan2(im(y), -1 + re(y))\ 4 / 2 2 /atan2(im(y), -1 + re(y))\
x2 = 3 + \/ (-1 + re(y)) + im (y) *cos|------------------------| + I*\/ (-1 + re(y)) + im (y) *sin|------------------------|
\ 2 / \ 2 /