x^2+y^2=2019 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: x^2+y^2=2019

    Решение

    Подробное решение
    Перенесём правую часть уравнения в
    левую часть уравнения со знаком минус.

    Уравнение превратится из
    x2+y2=2019x^{2} + y^{2} = 2019
    в
    (x2+y2)2019=0\left(x^{2} + y^{2}\right) - 2019 = 0
    Это уравнение вида
    a*x^2 + b*x + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    x1=Db2ax_{1} = \frac{\sqrt{D} - b}{2 a}
    x2=Db2ax_{2} = \frac{- \sqrt{D} - b}{2 a}
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    a=1a = 1
    b=0b = 0
    c=y22019c = y^{2} - 2019
    , то
    D = b^2 - 4 * a * c = 

    (0)^2 - 4 * (1) * (-2019 + y^2) = 8076 - 4*y^2

    Уравнение имеет два корня.
    x1 = (-b + sqrt(D)) / (2*a)

    x2 = (-b - sqrt(D)) / (2*a)

    или
    x1=80764y22x_{1} = \frac{\sqrt{8076 - 4 y^{2}}}{2}
    Упростить
    x2=80764y22x_{2} = - \frac{\sqrt{8076 - 4 y^{2}}}{2}
    Упростить
    График
    Быстрый ответ [src]
               _____________________________________________                                                            _____________________________________________                                                   
              /                         2                       /     /                         2        2   \\        /                         2                       /     /                         2        2   \\
           4 /  /         2        2   \        2      2        |atan2\-2*im(y)*re(y), 2019 + im (y) - re (y)/|     4 /  /         2        2   \        2      2        |atan2\-2*im(y)*re(y), 2019 + im (y) - re (y)/|
    x1 = - \/   \2019 + im (y) - re (y)/  + 4*im (y)*re (y) *cos|---------------------------------------------| - I*\/   \2019 + im (y) - re (y)/  + 4*im (y)*re (y) *sin|---------------------------------------------|
                                                                \                      2                      /                                                          \                      2                      /
    x1=i((re(y))2+(im(y))2+2019)2+4(re(y))2(im(y))24sin(atan2(2re(y)im(y),(re(y))2+(im(y))2+2019)2)((re(y))2+(im(y))2+2019)2+4(re(y))2(im(y))24cos(atan2(2re(y)im(y),(re(y))2+(im(y))2+2019)2)x_{1} = - i \sqrt[4]{\left(- \left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2} + 2019\right)^{2} + 4 \left(\operatorname{re}{\left(y\right)}\right)^{2} \left(\operatorname{im}{\left(y\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(- 2 \operatorname{re}{\left(y\right)} \operatorname{im}{\left(y\right)},- \left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2} + 2019 \right)}}{2} \right)} - \sqrt[4]{\left(- \left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2} + 2019\right)^{2} + 4 \left(\operatorname{re}{\left(y\right)}\right)^{2} \left(\operatorname{im}{\left(y\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(- 2 \operatorname{re}{\left(y\right)} \operatorname{im}{\left(y\right)},- \left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2} + 2019 \right)}}{2} \right)}
             _____________________________________________                                                            _____________________________________________                                                   
            /                         2                       /     /                         2        2   \\        /                         2                       /     /                         2        2   \\
         4 /  /         2        2   \        2      2        |atan2\-2*im(y)*re(y), 2019 + im (y) - re (y)/|     4 /  /         2        2   \        2      2        |atan2\-2*im(y)*re(y), 2019 + im (y) - re (y)/|
    x2 = \/   \2019 + im (y) - re (y)/  + 4*im (y)*re (y) *cos|---------------------------------------------| + I*\/   \2019 + im (y) - re (y)/  + 4*im (y)*re (y) *sin|---------------------------------------------|
                                                              \                      2                      /                                                          \                      2                      /
    x2=i((re(y))2+(im(y))2+2019)2+4(re(y))2(im(y))24sin(atan2(2re(y)im(y),(re(y))2+(im(y))2+2019)2)+((re(y))2+(im(y))2+2019)2+4(re(y))2(im(y))24cos(atan2(2re(y)im(y),(re(y))2+(im(y))2+2019)2)x_{2} = i \sqrt[4]{\left(- \left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2} + 2019\right)^{2} + 4 \left(\operatorname{re}{\left(y\right)}\right)^{2} \left(\operatorname{im}{\left(y\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(- 2 \operatorname{re}{\left(y\right)} \operatorname{im}{\left(y\right)},- \left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2} + 2019 \right)}}{2} \right)} + \sqrt[4]{\left(- \left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2} + 2019\right)^{2} + 4 \left(\operatorname{re}{\left(y\right)}\right)^{2} \left(\operatorname{im}{\left(y\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(- 2 \operatorname{re}{\left(y\right)} \operatorname{im}{\left(y\right)},- \left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2} + 2019 \right)}}{2} \right)}
    Сумма и произведение корней [src]
    сумма
          _____________________________________________                                                            _____________________________________________                                                          _____________________________________________                                                            _____________________________________________                                                   
         /                         2                       /     /                         2        2   \\        /                         2                       /     /                         2        2   \\      /                         2                       /     /                         2        2   \\        /                         2                       /     /                         2        2   \\
      4 /  /         2        2   \        2      2        |atan2\-2*im(y)*re(y), 2019 + im (y) - re (y)/|     4 /  /         2        2   \        2      2        |atan2\-2*im(y)*re(y), 2019 + im (y) - re (y)/|   4 /  /         2        2   \        2      2        |atan2\-2*im(y)*re(y), 2019 + im (y) - re (y)/|     4 /  /         2        2   \        2      2        |atan2\-2*im(y)*re(y), 2019 + im (y) - re (y)/|
    - \/   \2019 + im (y) - re (y)/  + 4*im (y)*re (y) *cos|---------------------------------------------| - I*\/   \2019 + im (y) - re (y)/  + 4*im (y)*re (y) *sin|---------------------------------------------| + \/   \2019 + im (y) - re (y)/  + 4*im (y)*re (y) *cos|---------------------------------------------| + I*\/   \2019 + im (y) - re (y)/  + 4*im (y)*re (y) *sin|---------------------------------------------|
                                                           \                      2                      /                                                          \                      2                      /                                                        \                      2                      /                                                          \                      2                      /
    (i((re(y))2+(im(y))2+2019)2+4(re(y))2(im(y))24sin(atan2(2re(y)im(y),(re(y))2+(im(y))2+2019)2)((re(y))2+(im(y))2+2019)2+4(re(y))2(im(y))24cos(atan2(2re(y)im(y),(re(y))2+(im(y))2+2019)2))+(i((re(y))2+(im(y))2+2019)2+4(re(y))2(im(y))24sin(atan2(2re(y)im(y),(re(y))2+(im(y))2+2019)2)+((re(y))2+(im(y))2+2019)2+4(re(y))2(im(y))24cos(atan2(2re(y)im(y),(re(y))2+(im(y))2+2019)2))\left(- i \sqrt[4]{\left(- \left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2} + 2019\right)^{2} + 4 \left(\operatorname{re}{\left(y\right)}\right)^{2} \left(\operatorname{im}{\left(y\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(- 2 \operatorname{re}{\left(y\right)} \operatorname{im}{\left(y\right)},- \left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2} + 2019 \right)}}{2} \right)} - \sqrt[4]{\left(- \left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2} + 2019\right)^{2} + 4 \left(\operatorname{re}{\left(y\right)}\right)^{2} \left(\operatorname{im}{\left(y\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(- 2 \operatorname{re}{\left(y\right)} \operatorname{im}{\left(y\right)},- \left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2} + 2019 \right)}}{2} \right)}\right) + \left(i \sqrt[4]{\left(- \left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2} + 2019\right)^{2} + 4 \left(\operatorname{re}{\left(y\right)}\right)^{2} \left(\operatorname{im}{\left(y\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(- 2 \operatorname{re}{\left(y\right)} \operatorname{im}{\left(y\right)},- \left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2} + 2019 \right)}}{2} \right)} + \sqrt[4]{\left(- \left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2} + 2019\right)^{2} + 4 \left(\operatorname{re}{\left(y\right)}\right)^{2} \left(\operatorname{im}{\left(y\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(- 2 \operatorname{re}{\left(y\right)} \operatorname{im}{\left(y\right)},- \left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2} + 2019 \right)}}{2} \right)}\right)
    =
    0
    00
    произведение
    /      _____________________________________________                                                            _____________________________________________                                                   \ /    _____________________________________________                                                            _____________________________________________                                                   \
    |     /                         2                       /     /                         2        2   \\        /                         2                       /     /                         2        2   \\| |   /                         2                       /     /                         2        2   \\        /                         2                       /     /                         2        2   \\|
    |  4 /  /         2        2   \        2      2        |atan2\-2*im(y)*re(y), 2019 + im (y) - re (y)/|     4 /  /         2        2   \        2      2        |atan2\-2*im(y)*re(y), 2019 + im (y) - re (y)/|| |4 /  /         2        2   \        2      2        |atan2\-2*im(y)*re(y), 2019 + im (y) - re (y)/|     4 /  /         2        2   \        2      2        |atan2\-2*im(y)*re(y), 2019 + im (y) - re (y)/||
    |- \/   \2019 + im (y) - re (y)/  + 4*im (y)*re (y) *cos|---------------------------------------------| - I*\/   \2019 + im (y) - re (y)/  + 4*im (y)*re (y) *sin|---------------------------------------------||*|\/   \2019 + im (y) - re (y)/  + 4*im (y)*re (y) *cos|---------------------------------------------| + I*\/   \2019 + im (y) - re (y)/  + 4*im (y)*re (y) *sin|---------------------------------------------||
    \                                                       \                      2                      /                                                          \                      2                      // \                                                     \                      2                      /                                                          \                      2                      //
    (i((re(y))2+(im(y))2+2019)2+4(re(y))2(im(y))24sin(atan2(2re(y)im(y),(re(y))2+(im(y))2+2019)2)((re(y))2+(im(y))2+2019)2+4(re(y))2(im(y))24cos(atan2(2re(y)im(y),(re(y))2+(im(y))2+2019)2))(i((re(y))2+(im(y))2+2019)2+4(re(y))2(im(y))24sin(atan2(2re(y)im(y),(re(y))2+(im(y))2+2019)2)+((re(y))2+(im(y))2+2019)2+4(re(y))2(im(y))24cos(atan2(2re(y)im(y),(re(y))2+(im(y))2+2019)2))\left(- i \sqrt[4]{\left(- \left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2} + 2019\right)^{2} + 4 \left(\operatorname{re}{\left(y\right)}\right)^{2} \left(\operatorname{im}{\left(y\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(- 2 \operatorname{re}{\left(y\right)} \operatorname{im}{\left(y\right)},- \left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2} + 2019 \right)}}{2} \right)} - \sqrt[4]{\left(- \left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2} + 2019\right)^{2} + 4 \left(\operatorname{re}{\left(y\right)}\right)^{2} \left(\operatorname{im}{\left(y\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(- 2 \operatorname{re}{\left(y\right)} \operatorname{im}{\left(y\right)},- \left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2} + 2019 \right)}}{2} \right)}\right) \left(i \sqrt[4]{\left(- \left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2} + 2019\right)^{2} + 4 \left(\operatorname{re}{\left(y\right)}\right)^{2} \left(\operatorname{im}{\left(y\right)}\right)^{2}} \sin{\left(\frac{\operatorname{atan_{2}}{\left(- 2 \operatorname{re}{\left(y\right)} \operatorname{im}{\left(y\right)},- \left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2} + 2019 \right)}}{2} \right)} + \sqrt[4]{\left(- \left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2} + 2019\right)^{2} + 4 \left(\operatorname{re}{\left(y\right)}\right)^{2} \left(\operatorname{im}{\left(y\right)}\right)^{2}} \cos{\left(\frac{\operatorname{atan_{2}}{\left(- 2 \operatorname{re}{\left(y\right)} \operatorname{im}{\left(y\right)},- \left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2} + 2019 \right)}}{2} \right)}\right)
    =
         _____________________________________________                                                 
        /                         2                            /                         2        2   \
       /  /         2        2   \        2      2      I*atan2\-2*im(y)*re(y), 2019 + im (y) - re (y)/
    -\/   \2019 + im (y) - re (y)/  + 4*im (y)*re (y) *e                                               
    ((re(y))2+(im(y))2+2019)2+4(re(y))2(im(y))2eiatan2(2re(y)im(y),(re(y))2+(im(y))2+2019)- \sqrt{\left(- \left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2} + 2019\right)^{2} + 4 \left(\operatorname{re}{\left(y\right)}\right)^{2} \left(\operatorname{im}{\left(y\right)}\right)^{2}} e^{i \operatorname{atan_{2}}{\left(- 2 \operatorname{re}{\left(y\right)} \operatorname{im}{\left(y\right)},- \left(\operatorname{re}{\left(y\right)}\right)^{2} + \left(\operatorname{im}{\left(y\right)}\right)^{2} + 2019 \right)}}
    Теорема Виета
    это приведённое квадратное уравнение
    px+q+x2=0p x + q + x^{2} = 0
    где
    p=bap = \frac{b}{a}
    p=0p = 0
    q=caq = \frac{c}{a}
    q=y22019q = y^{2} - 2019
    Формулы Виета
    x1+x2=px_{1} + x_{2} = - p
    x1x2=qx_{1} x_{2} = q
    x1+x2=0x_{1} + x_{2} = 0
    x1x2=y22019x_{1} x_{2} = y^{2} - 2019