x^2-12х=0 (уравнение)

Уравнение с неизвестным  :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: x^2-12х=0

    Решение

    Вы ввели [src]
     2           
    x  - 12*x = 0
    $$x^{2} - 12 x = 0$$
    Подробное решение
    Это уравнение вида
    a*x^2 + b*x + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    $$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
    $$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    $$a = 1$$
    $$b = -12$$
    $$c = 0$$
    , то
    D = b^2 - 4 * a * c = 

    (-12)^2 - 4 * (1) * (0) = 144

    Т.к. D > 0, то уравнение имеет два корня.
    x1 = (-b + sqrt(D)) / (2*a)

    x2 = (-b - sqrt(D)) / (2*a)

    или
    $$x_{1} = 12$$
    $$x_{2} = 0$$
    График
    Быстрый ответ [src]
    x1 = 0
    $$x_{1} = 0$$
    x2 = 12
    $$x_{2} = 12$$
    Численный ответ [src]
    x1 = 0.0
    x2 = 12.0
    ×

    Где учитесь?

    Для правильного составления решения, укажите: