Произведение корней z^3=-i

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Решение

    Сумма и произведение корней [src]
    сумма
                ___     ___    
          I   \/ 3    \/ 3    I
    I + - - - ----- + ----- - -
          2     2       2     2
    $$\left(\frac{\sqrt{3}}{2} - \frac{i}{2}\right) + \left(\left(- \frac{\sqrt{3}}{2} - \frac{i}{2}\right) + i\right)$$
    =
    0
    $$0$$
    произведение
      /        ___\ /  ___    \
      |  I   \/ 3 | |\/ 3    I|
    I*|- - - -----|*|----- - -|
      \  2     2  / \  2     2/
    $$i \left(- \frac{\sqrt{3}}{2} - \frac{i}{2}\right) \left(\frac{\sqrt{3}}{2} - \frac{i}{2}\right)$$
    =
    -I
    $$- i$$
    Теорема Виета
    это приведённое кубическое уравнение
    $$p z^{2} + q z + v + z^{3} = 0$$
    где
    $$p = \frac{b}{a}$$
    $$p = 0$$
    $$q = \frac{c}{a}$$
    $$q = 0$$
    $$v = \frac{d}{a}$$
    $$v = i$$
    Формулы Виета
    $$z_{1} + z_{2} + z_{3} = - p$$
    $$z_{1} z_{2} + z_{1} z_{3} + z_{2} z_{3} = q$$
    $$z_{1} z_{2} z_{3} = v$$
    $$z_{1} + z_{2} + z_{3} = 0$$
    $$z_{1} z_{2} + z_{1} z_{3} + z_{2} z_{3} = 0$$
    $$z_{1} z_{2} z_{3} = i$$