(tan(x)+cot(x))*sin(2*x) если x=-3/2 (упростите выражение)

Учитель очень удивится увидев твоё верное решение 😼

Решение

Вы ввели [src]
(tan(x) + cot(x))*sin(2*x)
(tan(x)+cot(x))sin(2x)\left(\tan{\left (x \right )} + \cot{\left (x \right )}\right) \sin{\left (2 x \right )}
Подстановка условия [src]
(tan(x) + cot(x))*sin(2*x) при x = -3/2
(tan(x) + cot(x))*sin(2*x)
(tan(x)+cot(x))sin(2x)\left(\tan{\left (x \right )} + \cot{\left (x \right )}\right) \sin{\left (2 x \right )}
(tan((-3/2)) + cot((-3/2)))*sin(2*(-3/2))
(tan((3/2))+cot((3/2)))sin(2(3/2))\left(\tan{\left ((-3/2) \right )} + \cot{\left ((-3/2) \right )}\right) \sin{\left (2 (-3/2) \right )}
(tan(-3/2) + cot(-3/2))*sin(2*(-3)/2)
(tan(32)+cot(32))sin(62)\left(\tan{\left (- \frac{3}{2} \right )} + \cot{\left (- \frac{3}{2} \right )}\right) \sin{\left (\frac{-6}{2} \right )}
-(-cot(3/2) - tan(3/2))*sin(3)
1(1tan(32)+1cot(32))sin(3)-1 \left(-1 \tan{\left (\frac{3}{2} \right )} + -1 \cot{\left (\frac{3}{2} \right )}\right) \sin{\left (3 \right )}
Численный ответ [src]
(cot(x) + tan(x))*sin(2*x)
Собрать выражение [src]
cot(x)*sin(2*x) + sin(2*x)*tan(x)
sin(2x)tan(x)+sin(2x)cot(x)\sin{\left (2 x \right )} \tan{\left (x \right )} + \sin{\left (2 x \right )} \cot{\left (x \right )}
Общий знаменатель [src]
cot(x)*sin(2*x) + sin(2*x)*tan(x)
sin(2x)tan(x)+sin(2x)cot(x)\sin{\left (2 x \right )} \tan{\left (x \right )} + \sin{\left (2 x \right )} \cot{\left (x \right )}
Раскрыть выражение [src]
2*(cot(x) + tan(x))*cos(x)*sin(x)
2(tan(x)+cot(x))sin(x)cos(x)2 \left(\tan{\left (x \right )} + \cot{\left (x \right )}\right) \sin{\left (x \right )} \cos{\left (x \right )}