Задача S41, если a1=0;d=1,5 (на арифметическую прогрессию)

Учитель очень удивится увидев твоё верное решение 😼

Решение

Вы ввели [src]
S41, если a1=0;d=1,5
Найдено в тексте задачи:
Первый член: a1 = 0
n-член an (n = 40 + 1 = 41)
Разность: d = (3/2)
Другие члены: a1 = 0
Пример: ?
Найти члены от 1 до 41
Первый член [src]
a_1 = 0
a1=0a_{1} = 0
Разность [src]
d = 3/2
d=32d = \frac{3}{2}
Сумма [src]
    n*(a_1 + a_n)
S = -------------
          2      
S=n(a1+an)2S = \frac{n \left(a_{1} + a_{n}\right)}{2}
S41 = 1230
S41=1230S_{41} = 1230
n-член [src]
a_n = a_1 + d*(-1 + n)
an=a1+d(n1)a_{n} = a_{1} + d \left(n - 1\right)
a_41 = 60
a41=60a_{41} = 60
Пример [src]
...
Расширенный пример:
0; 3/2; 3; 9/2; 6; 15/2; 9; 21/2; 12; 27/2; 15; 33/2; 18; 39/2; 21; 45/2; 24; 51/2; 27; 57/2; 30; 63/2; 33; 69/2; 36; 75/2; 39; 81/2; 42; 87/2; 45; 93/2; 48; 99/2; 51; 105/2; 54; 111/2; 57; 117/2; 60...
a1 = 0
a1=0a_{1} = 0
a2 = 3/2
a2=32a_{2} = \frac{3}{2}
a3 = 3
a3=3a_{3} = 3
a4 = 9/2
a4=92a_{4} = \frac{9}{2}
a5 = 6
a5=6a_{5} = 6
a6 = 15/2
a6=152a_{6} = \frac{15}{2}
a7 = 9
a7=9a_{7} = 9
a8 = 21/2
a8=212a_{8} = \frac{21}{2}
a9 = 12
a9=12a_{9} = 12
a10 = 27/2
a10=272a_{10} = \frac{27}{2}
a11 = 15
a11=15a_{11} = 15
a12 = 33/2
a12=332a_{12} = \frac{33}{2}
a13 = 18
a13=18a_{13} = 18
a14 = 39/2
a14=392a_{14} = \frac{39}{2}
a15 = 21
a15=21a_{15} = 21
a16 = 45/2
a16=452a_{16} = \frac{45}{2}
a17 = 24
a17=24a_{17} = 24
a18 = 51/2
a18=512a_{18} = \frac{51}{2}
a19 = 27
a19=27a_{19} = 27
a20 = 57/2
a20=572a_{20} = \frac{57}{2}
a21 = 30
a21=30a_{21} = 30
a22 = 63/2
a22=632a_{22} = \frac{63}{2}
a23 = 33
a23=33a_{23} = 33
a24 = 69/2
a24=692a_{24} = \frac{69}{2}
a25 = 36
a25=36a_{25} = 36
a26 = 75/2
a26=752a_{26} = \frac{75}{2}
a27 = 39
a27=39a_{27} = 39
a28 = 81/2
a28=812a_{28} = \frac{81}{2}
a29 = 42
a29=42a_{29} = 42
a30 = 87/2
a30=872a_{30} = \frac{87}{2}
a31 = 45
a31=45a_{31} = 45
a32 = 93/2
a32=932a_{32} = \frac{93}{2}
a33 = 48
a33=48a_{33} = 48
a34 = 99/2
a34=992a_{34} = \frac{99}{2}
a35 = 51
a35=51a_{35} = 51
a36 = 105/2
a36=1052a_{36} = \frac{105}{2}
a37 = 54
a37=54a_{37} = 54
a38 = 111/2
a38=1112a_{38} = \frac{111}{2}
a39 = 57
a39=57a_{39} = 57
a40 = 117/2
a40=1172a_{40} = \frac{117}{2}
a41 = 60
a41=60a_{41} = 60
...