2
/ (1 - re(a))*im(a) (5 + re(a))*im(a) \ im (a) (1 - re(a))*(5 + re(a))
x1 = I*|- --------------------- - ---------------------| - --------------------- + -----------------------
| 2 2 2 2 | 2 2 2 2
\ (5 + re(a)) + im (a) (5 + re(a)) + im (a)/ (5 + re(a)) + im (a) (5 + re(a)) + im (a) $$x_{1} = \frac{\left(1 - \operatorname{re}{\left(a\right)}\right) \left(\operatorname{re}{\left(a\right)} + 5\right)}{\left(\operatorname{re}{\left(a\right)} + 5\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} + i \left(- \frac{\left(1 - \operatorname{re}{\left(a\right)}\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)} + 5\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} - \frac{\left(\operatorname{re}{\left(a\right)} + 5\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)} + 5\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}\right) - \frac{\left(\operatorname{im}{\left(a\right)}\right)^{2}}{\left(\operatorname{re}{\left(a\right)} + 5\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}$$
Сумма и произведение корней
[src] 2
/ (1 - re(a))*im(a) (5 + re(a))*im(a) \ im (a) (1 - re(a))*(5 + re(a))
I*|- --------------------- - ---------------------| - --------------------- + -----------------------
| 2 2 2 2 | 2 2 2 2
\ (5 + re(a)) + im (a) (5 + re(a)) + im (a)/ (5 + re(a)) + im (a) (5 + re(a)) + im (a)
$$\frac{\left(1 - \operatorname{re}{\left(a\right)}\right) \left(\operatorname{re}{\left(a\right)} + 5\right)}{\left(\operatorname{re}{\left(a\right)} + 5\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} + i \left(- \frac{\left(1 - \operatorname{re}{\left(a\right)}\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)} + 5\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} - \frac{\left(\operatorname{re}{\left(a\right)} + 5\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)} + 5\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}\right) - \frac{\left(\operatorname{im}{\left(a\right)}\right)^{2}}{\left(\operatorname{re}{\left(a\right)} + 5\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}$$
2
/ (1 - re(a))*im(a) (5 + re(a))*im(a) \ im (a) (1 - re(a))*(5 + re(a))
I*|- --------------------- - ---------------------| - --------------------- + -----------------------
| 2 2 2 2 | 2 2 2 2
\ (5 + re(a)) + im (a) (5 + re(a)) + im (a)/ (5 + re(a)) + im (a) (5 + re(a)) + im (a)
$$\frac{\left(1 - \operatorname{re}{\left(a\right)}\right) \left(\operatorname{re}{\left(a\right)} + 5\right)}{\left(\operatorname{re}{\left(a\right)} + 5\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} + i \left(- \frac{\left(1 - \operatorname{re}{\left(a\right)}\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)} + 5\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} - \frac{\left(\operatorname{re}{\left(a\right)} + 5\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)} + 5\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}\right) - \frac{\left(\operatorname{im}{\left(a\right)}\right)^{2}}{\left(\operatorname{re}{\left(a\right)} + 5\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}$$
2
/ (1 - re(a))*im(a) (5 + re(a))*im(a) \ im (a) (1 - re(a))*(5 + re(a))
I*|- --------------------- - ---------------------| - --------------------- + -----------------------
| 2 2 2 2 | 2 2 2 2
\ (5 + re(a)) + im (a) (5 + re(a)) + im (a)/ (5 + re(a)) + im (a) (5 + re(a)) + im (a)
$$\frac{\left(1 - \operatorname{re}{\left(a\right)}\right) \left(\operatorname{re}{\left(a\right)} + 5\right)}{\left(\operatorname{re}{\left(a\right)} + 5\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} + i \left(- \frac{\left(1 - \operatorname{re}{\left(a\right)}\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)} + 5\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}} - \frac{\left(\operatorname{re}{\left(a\right)} + 5\right) \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)} + 5\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}\right) - \frac{\left(\operatorname{im}{\left(a\right)}\right)^{2}}{\left(\operatorname{re}{\left(a\right)} + 5\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}$$
/ 2 \
-\im (a) + (-1 + re(a))*(5 + re(a)) + 6*I*im(a)/
-------------------------------------------------
2 2
(5 + re(a)) + im (a) $$- \frac{\left(\operatorname{re}{\left(a\right)} - 1\right) \left(\operatorname{re}{\left(a\right)} + 5\right) + \left(\operatorname{im}{\left(a\right)}\right)^{2} + 6 i \operatorname{im}{\left(a\right)}}{\left(\operatorname{re}{\left(a\right)} + 5\right)^{2} + \left(\operatorname{im}{\left(a\right)}\right)^{2}}$$
Решение параметрического уравнения
Дано уравнение с параметром:
$$a x = - a - 5 x + 1$$
Коэффициент при x равен
$$a + 5$$
тогда возможные случаи для a :
$$a < -5$$
$$a = -5$$
Рассмотри все случаи подробнее:
При
$$a < -5$$
уравнение будет
$$- x - 7 = 0$$
его решение
$$x = -7$$
При
$$a = -5$$
уравнение будет
$$-6 = 0$$
его решение
нет решений