Перенесём правую часть уравнения в левую часть уравнения со знаком минус.
Уравнение превратится из 4(x−1)(x−7)=3x2−16x в 4(x−1)(x−7)−(3x2−16x)=0 Раскроем выражение в уравнении 4(x−1)(x−7)−(3x2−16x)=0 Получаем квадратное уравнение x2−16x+28=0 Это уравнение вида
a*x^2 + b*x + c = 0
Квадратное уравнение можно решить с помощью дискриминанта. Корни квадратного уравнения: x1=2aD−b x2=2a−D−b где D = b^2 - 4*a*c - это дискриминант. Т.к. a=1 b=−16 c=28 , то