Дано уравнение: x3−3x2+2=0 преобразуем (−3x2+(1x3−1))+3=0 или (−3x2+(1x3−13))+3⋅12=0 −3(x2−12)+1(x3−13)=0 −3(x−1)(x+1)+1(x−1)((x2+1x)+12)=0 Вынесем общий множитель -1 + x за скобки получим: (x−1)(−3(x+1)+1((x2+1x)+12))=0 или (x−1)(x2−2x−2)=0 тогда: x1=1 и также получаем ур-ние x2−2x−2=0 Это уравнение вида
a*x^2 + b*x + c = 0
Квадратное уравнение можно решить с помощью дискриминанта. Корни квадратного уравнения: x2=2aD−b x3=2a−D−b где D = b^2 - 4*a*c - это дискриминант. Т.к. a=1 b=−2 c=−2 , то
D = b^2 - 4 * a * c =
(-2)^2 - 4 * (1) * (-2) = 12
Т.к. D > 0, то уравнение имеет два корня.
x2 = (-b + sqrt(D)) / (2*a)
x3 = (-b - sqrt(D)) / (2*a)
или x2=1+3 Упростить x3=1−3 Упростить Получаем окончательный ответ для (x^3 - 3*x^2 + 2) + 0 = 0: x1=1 x2=1+3 x3=1−3