Тригонометрическая часть
[src]$$\cos{\left(2 a \right)} + 1$$
2/a\ 2/a\
4*tan |-| 4*tan |-|
\2/ \2/
1 - -------------- + ----------------------
2 2
/ 2/a\\ / 2/a\\ 2
|1 + tan |-|| |1 + tan |-|| *tan (a)
\ \2// \ \2//
$$1 - \frac{4 \tan^{2}{\left(\frac{a}{2} \right)}}{\left(\tan^{2}{\left(\frac{a}{2} \right)} + 1\right)^{2}} + \frac{4 \tan^{2}{\left(\frac{a}{2} \right)}}{\left(\tan^{2}{\left(\frac{a}{2} \right)} + 1\right)^{2} \tan^{2}{\left(a \right)}}$$
// 0 for And(im(a) = 0, a mod pi = 0)\
|| |
2/ pi\ || 1 |
sec |a - --|*|<------------ otherwise |
// 0 for And(im(a) = 0, a mod pi = 0)\ \ 2 / || 2/ pi\ |
|| | ||sec |a - --| |
|| 1 | \\ \ 2 / /
1 - |<------------ otherwise | + --------------------------------------------------------------
|| 2/ pi\ | 2
||sec |a - --| | sec (a)
\\ \ 2 / /
$$\left(- \begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{1}{\sec^{2}{\left(a - \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right) + \left(\frac{\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{1}{\sec^{2}{\left(a - \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right) \sec^{2}{\left(a - \frac{\pi}{2} \right)}}{\sec^{2}{\left(a \right)}}\right) + 1$$
// 1 for And(im(a) = 0, a mod 2*pi = 0)\
|| |
2*|< 2 |
||cos (a) otherwise |
\\ /
$$2 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\cos^{2}{\left(a \right)} & \text{otherwise} \end{cases}\right)$$
2
/ 2/a\\
2*|1 - tan |-||
\ \2//
----------------
2
/ 2/a\\
|1 + tan |-||
\ \2//
$$\frac{2 \left(1 - \tan^{2}{\left(\frac{a}{2} \right)}\right)^{2}}{\left(\tan^{2}{\left(\frac{a}{2} \right)} + 1\right)^{2}}$$
1 1
1 + ------------ - -------
2/pi \ 2
csc |-- - a| csc (a)
\2 /
$$1 + \frac{1}{\csc^{2}{\left(- a + \frac{\pi}{2} \right)}} - \frac{1}{\csc^{2}{\left(a \right)}}$$
// 1 for And(im(a) = 0, a mod 2*pi = 0)\
|| |
|| 2 |
||/ 2/a\\ |
|||-1 + cot |-|| |
2*|<\ \2// |
||--------------- otherwise |
|| 2 |
|| / 2/a\\ |
|| |1 + cot |-|| |
\\ \ \2// /
$$2 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod 2 \pi = 0 \\\frac{\left(\cot^{2}{\left(\frac{a}{2} \right)} - 1\right)^{2}}{\left(\cot^{2}{\left(\frac{a}{2} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases}\right)$$
// 0 for And(im(a) = 0, a mod pi = 0)\ // 0 for And(im(a) = 0, a mod pi = 0)\
|| | 2 || |
1 - |< 2 | + cot (a)*|< 2 |
||sin (a) otherwise | ||sin (a) otherwise |
\\ / \\ /
$$\left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin^{2}{\left(a \right)} & \text{otherwise} \end{cases}\right) \cot^{2}{\left(a \right)}\right) - \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin^{2}{\left(a \right)} & \text{otherwise} \end{cases}\right) + 1$$
// 0 for And(im(a) = 0, a mod pi = 0)\ // 0 for And(im(a) = 0, a mod pi = 0)\
|| | || |
||/ 0 for And(im(a) = 0, a mod pi = 0) | ||/ 0 for And(im(a) = 0, a mod pi = 0) |
||| | ||| |
||| 2/a\ | ||| 2/a\ |
||| 4*cot |-| | 2 ||| 4*cot |-| |
1 - |<| \2/ | + cot (a)*|<| \2/ |
||<-------------- otherwise otherwise | ||<-------------- otherwise otherwise |
||| 2 | ||| 2 |
|||/ 2/a\\ | |||/ 2/a\\ |
||||1 + cot |-|| | ||||1 + cot |-|| |
|||\ \2// | |||\ \2// |
\\\ / \\\ /
$$\left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{4 \cot^{2}{\left(\frac{a}{2} \right)}}{\left(\cot^{2}{\left(\frac{a}{2} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \cot^{2}{\left(a \right)}\right) - \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{4 \cot^{2}{\left(\frac{a}{2} \right)}}{\left(\cot^{2}{\left(\frac{a}{2} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) + 1$$
// 0 for And(im(a) = 0, a mod pi = 0)\
|| |
2 || 1 |
csc (a)*|<------- otherwise |
// 0 for And(im(a) = 0, a mod pi = 0)\ || 2 |
|| | ||csc (a) |
|| 1 | \\ /
1 - |<------- otherwise | + ----------------------------------------------------
|| 2 | 2/pi \
||csc (a) | csc |-- - a|
\\ / \2 /
$$\left(\frac{\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{1}{\csc^{2}{\left(a \right)}} & \text{otherwise} \end{cases}\right) \csc^{2}{\left(a \right)}}{\csc^{2}{\left(- a + \frac{\pi}{2} \right)}}\right) - \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{1}{\csc^{2}{\left(a \right)}} & \text{otherwise} \end{cases}\right) + 1$$
2/ pi\
2*sin |a + --|
\ 2 /
$$2 \sin^{2}{\left(a + \frac{\pi}{2} \right)}$$
/ 0 for And(im(a) = 0, a mod pi = 0)
|
| 2/a\
| 4*tan |-|
| \2/
<-------------- otherwise
// 0 for And(im(a) = 0, a mod pi = 0)\ | 2
|| | |/ 2/a\\
|| 2/a\ | ||1 + tan |-||
|| 4*tan |-| | |\ \2//
|| \2/ | \
1 - |<-------------- otherwise | + -------------------------------------------------
|| 2 | 2
||/ 2/a\\ | tan (a)
|||1 + tan |-|| |
||\ \2// |
\\ /
$$\left(- \begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{4 \tan^{2}{\left(\frac{a}{2} \right)}}{\left(\tan^{2}{\left(\frac{a}{2} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases}\right) + \left(\frac{\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{4 \tan^{2}{\left(\frac{a}{2} \right)}}{\left(\tan^{2}{\left(\frac{a}{2} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases}}{\tan^{2}{\left(a \right)}}\right) + 1$$
$$\frac{2}{\sec^{2}{\left(a \right)}}$$
// 0 for And(im(a) = 0, a mod pi = 0)\ // 0 for And(im(a) = 0, a mod pi = 0)\
|| | || |
|| 2/a\ | || 2/a\ |
|| 4*cot |-| | || 4*cot |-| |
|| \2/ | 2 || \2/ |
1 - |<-------------- otherwise | + cot (a)*|<-------------- otherwise |
|| 2 | || 2 |
||/ 2/a\\ | ||/ 2/a\\ |
|||1 + cot |-|| | |||1 + cot |-|| |
||\ \2// | ||\ \2// |
\\ / \\ /
$$\left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{4 \cot^{2}{\left(\frac{a}{2} \right)}}{\left(\cot^{2}{\left(\frac{a}{2} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases}\right) \cot^{2}{\left(a \right)}\right) - \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{4 \cot^{2}{\left(\frac{a}{2} \right)}}{\left(\cot^{2}{\left(\frac{a}{2} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases}\right) + 1$$
1 1
1 + ------- - ------------
2 2/ pi\
sec (a) sec |a - --|
\ 2 /
$$1 - \frac{1}{\sec^{2}{\left(a - \frac{\pi}{2} \right)}} + \frac{1}{\sec^{2}{\left(a \right)}}$$
2 2/ pi\
1 + cos (a) - cos |a - --|
\ 2 /
$$\cos^{2}{\left(a \right)} - \cos^{2}{\left(a - \frac{\pi}{2} \right)} + 1$$
/ 0 for And(im(a) = 0, a mod pi = 0)
|
< 2
// 0 for And(im(a) = 0, a mod pi = 0)\ |sin (a) otherwise
|| | \
1 - |< 2 | + ------------------------------------------
||sin (a) otherwise | 2
\\ / tan (a)
$$\left(- \begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin^{2}{\left(a \right)} & \text{otherwise} \end{cases}\right) + \left(\frac{\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin^{2}{\left(a \right)} & \text{otherwise} \end{cases}}{\tan^{2}{\left(a \right)}}\right) + 1$$
2 2
1 + cos (a) - sin (a)
$$- \sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)} + 1$$
// 0 for And(im(a) = 0, a mod pi = 0)\ // 0 for And(im(a) = 0, a mod pi = 0)\
|| | || |
||/ 0 for And(im(a) = 0, a mod pi = 0) | 2 ||/ 0 for And(im(a) = 0, a mod pi = 0) |
1 - |<| | + cot (a)*|<| |
||< 2 otherwise | ||< 2 otherwise |
|||sin (a) otherwise | |||sin (a) otherwise |
\\\ / \\\ /
$$\left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin^{2}{\left(a \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \cot^{2}{\left(a \right)}\right) - \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin^{2}{\left(a \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) + 1$$
$$2 \cos^{2}{\left(a \right)}$$
2
2 sin (2*a)
1 - sin (a) + ---------
2
4*sin (a)
$$- \sin^{2}{\left(a \right)} + 1 + \frac{\sin^{2}{\left(2 a \right)}}{4 \sin^{2}{\left(a \right)}}$$
// 0 for And(im(a) = 0, a mod pi = 0)\
2 || |
sin (2*a)*|< 2 |
// 0 for And(im(a) = 0, a mod pi = 0)\ ||sin (a) otherwise |
|| | \\ /
1 - |< 2 | + ------------------------------------------------------
||sin (a) otherwise | 4
\\ / 4*sin (a)
$$\left(- \begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin^{2}{\left(a \right)} & \text{otherwise} \end{cases}\right) + \left(\frac{\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin^{2}{\left(a \right)} & \text{otherwise} \end{cases}\right) \sin^{2}{\left(2 a \right)}}{4 \sin^{4}{\left(a \right)}}\right) + 1$$
// 0 for And(im(a) = 0, a mod pi = 0)\
2 || |
cos (a)*|< 2/ pi\ |
// 0 for And(im(a) = 0, a mod pi = 0)\ ||cos |a - --| otherwise |
|| | \\ \ 2 / /
1 - |< 2/ pi\ | + ---------------------------------------------------------
||cos |a - --| otherwise | 2/ pi\
\\ \ 2 / / cos |a - --|
\ 2 /
$$\left(\frac{\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\cos^{2}{\left(a - \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right) \cos^{2}{\left(a \right)}}{\cos^{2}{\left(a - \frac{\pi}{2} \right)}}\right) - \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\cos^{2}{\left(a - \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right) + 1$$
1 1
1 + ------- - -------
2 2
sec (a) csc (a)
$$1 + \frac{1}{\sec^{2}{\left(a \right)}} - \frac{1}{\csc^{2}{\left(a \right)}}$$
2
------------
2/pi \
csc |-- - a|
\2 /
$$\frac{2}{\csc^{2}{\left(- a + \frac{\pi}{2} \right)}}$$