x^2-x-56=0 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: x^2-x-56=0

    Решение

    Вы ввели [src]
     2             
    x  - x - 56 = 0
    x2x56=0x^{2} - x - 56 = 0
    Подробное решение
    Это уравнение вида
    a*x^2 + b*x + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    x1=Db2ax_{1} = \frac{\sqrt{D} - b}{2 a}
    x2=Db2ax_{2} = \frac{- \sqrt{D} - b}{2 a}
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    a=1a = 1
    b=1b = -1
    c=56c = -56
    , то
    D = b^2 - 4 * a * c = 

    (-1)^2 - 4 * (1) * (-56) = 225

    Т.к. D > 0, то уравнение имеет два корня.
    x1 = (-b + sqrt(D)) / (2*a)

    x2 = (-b - sqrt(D)) / (2*a)

    или
    x1=8x_{1} = 8
    Упростить
    x2=7x_{2} = -7
    Упростить
    График
    05-510152025500-250
    Быстрый ответ [src]
    x1 = -7
    x1=7x_{1} = -7
    x2 = 8
    x2=8x_{2} = 8
    Сумма и произведение корней [src]
    сумма
    0 - 7 + 8
    (7+0)+8\left(-7 + 0\right) + 8
    =
    1
    11
    произведение
    1*-7*8
    1(7)81 \left(-7\right) 8
    =
    -56
    56-56
    Теорема Виета
    это приведённое квадратное уравнение
    px+q+x2=0p x + q + x^{2} = 0
    где
    p=bap = \frac{b}{a}
    p=1p = -1
    q=caq = \frac{c}{a}
    q=56q = -56
    Формулы Виета
    x1+x2=px_{1} + x_{2} = - p
    x1x2=qx_{1} x_{2} = q
    x1+x2=1x_{1} + x_{2} = 1
    x1x2=56x_{1} x_{2} = -56
    Численный ответ [src]
    x1 = 8.0
    x2 = -7.0
    График
    x^2-x-56=0 (уравнение) /media/krcore-image-pods/48d9/e825/d33a/44e1/im.png