Тригонометрическая часть
[src] / 2/3*x\\ /7*x\ / 2/7*x\\ /3*x\
2*|1 - tan |---||*tan|---| 2*|1 - tan |---||*tan|---|
\ \ 2 // \ 2 / \ \ 2 // \ 2 /
------------------------------- + -------------------------------
/ 2/3*x\\ / 2/7*x\\ / 2/3*x\\ / 2/7*x\\
|1 + tan |---||*|1 + tan |---|| |1 + tan |---||*|1 + tan |---||
\ \ 2 // \ \ 2 // \ \ 2 // \ \ 2 //$$\frac{2 \cdot \left(1 - \tan^{2}{\left(\frac{3 x}{2} \right)}\right) \tan{\left(\frac{7 x}{2} \right)}}{\left(\tan^{2}{\left(\frac{3 x}{2} \right)} + 1\right) \left(\tan^{2}{\left(\frac{7 x}{2} \right)} + 1\right)} + \frac{2 \cdot \left(1 - \tan^{2}{\left(\frac{7 x}{2} \right)}\right) \tan{\left(\frac{3 x}{2} \right)}}{\left(\tan^{2}{\left(\frac{3 x}{2} \right)} + 1\right) \left(\tan^{2}{\left(\frac{7 x}{2} \right)} + 1\right)}$$
/ pi\ / pi\
cos(3*x)*cos|7*x - --| + cos(7*x)*cos|3*x - --|
\ 2 / \ 2 /$$\cos{\left(3 x \right)} \cos{\left(7 x - \frac{\pi}{2} \right)} + \cos{\left(7 x \right)} \cos{\left(3 x - \frac{\pi}{2} \right)}$$
1 1
---------------------- + ----------------------
/ pi\ / pi\
sec(3*x)*sec|7*x - --| sec(7*x)*sec|3*x - --|
\ 2 / \ 2 /$$\frac{1}{\sec{\left(7 x \right)} \sec{\left(3 x - \frac{\pi}{2} \right)}} + \frac{1}{\sec{\left(3 x \right)} \sec{\left(7 x - \frac{\pi}{2} \right)}}$$
1 1
----------------- + -----------------
csc(3*x)*sec(7*x) csc(7*x)*sec(3*x)
$$\frac{1}{\csc{\left(7 x \right)} \sec{\left(3 x \right)}} + \frac{1}{\csc{\left(3 x \right)} \sec{\left(7 x \right)}}$$
// 0 for And(im(x) = 0, 3*x mod pi = 0)\ // 0 for And(im(x) = 0, 7*x mod pi = 0)\
|| | // 1 for And(im(x) = 0, 7*x mod 2*pi = 0)\ || | // 1 for And(im(x) = 0, 3*x mod 2*pi = 0)\
|| 1 | || | || 1 | || |
|<------------- otherwise |*|< 1 | + |<------------- otherwise |*|< 1 |
|| / pi\ | ||-------- otherwise | || / pi\ | ||-------- otherwise |
||sec|3*x - --| | \\sec(7*x) / ||sec|7*x - --| | \\sec(3*x) /
\\ \ 2 / / \\ \ 2 / /
$$\left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 3 x \bmod \pi = 0 \\\frac{1}{\sec{\left(3 x - \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 7 x \bmod 2 \pi = 0 \\\frac{1}{\sec{\left(7 x \right)}} & \text{otherwise} \end{cases}\right)\right) + \left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 7 x \bmod \pi = 0 \\\frac{1}{\sec{\left(7 x - \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 3 x \bmod 2 \pi = 0 \\\frac{1}{\sec{\left(3 x \right)}} & \text{otherwise} \end{cases}\right)\right)$$
// 1 for And(im(x) = 0, 7*x mod 2*pi = 0)\ // 1 for And(im(x) = 0, 3*x mod 2*pi = 0)\
// 0 for And(im(x) = 0, 3*x mod pi = 0)\ || | // 0 for And(im(x) = 0, 7*x mod pi = 0)\ || |
|< |*|< /pi \ | + |< |*|< /pi \ |
\\sin(3*x) otherwise / ||sin|-- + 7*x| otherwise | \\sin(7*x) otherwise / ||sin|-- + 3*x| otherwise |
\\ \2 / / \\ \2 / /$$\left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 3 x \bmod \pi = 0 \\\sin{\left(3 x \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 7 x \bmod 2 \pi = 0 \\\sin{\left(7 x + \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right)\right) + \left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 7 x \bmod \pi = 0 \\\sin{\left(7 x \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 3 x \bmod 2 \pi = 0 \\\sin{\left(3 x + \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right)\right)$$
1 1
---------------------- + ----------------------
/pi \ /pi \
csc(3*x)*csc|-- - 7*x| csc(7*x)*csc|-- - 3*x|
\2 / \2 /$$\frac{1}{\csc{\left(7 x \right)} \csc{\left(- 3 x + \frac{\pi}{2} \right)}} + \frac{1}{\csc{\left(3 x \right)} \csc{\left(- 7 x + \frac{\pi}{2} \right)}}$$
$$\frac{1}{\csc{\left(10 x \right)}}$$
/ 0 for And(im(x) = 0, 10*x mod pi = 0)
<
\sin(10*x) otherwise
$$\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 10 x \bmod \pi = 0 \\\sin{\left(10 x \right)} & \text{otherwise} \end{cases}$$
2*tan(5*x)
-------------
2
1 + tan (5*x)$$\frac{2 \tan{\left(5 x \right)}}{\tan^{2}{\left(5 x \right)} + 1}$$
// 0 for And(im(x) = 0, 3*x mod pi = 0)\ // 1 for And(im(x) = 0, 7*x mod 2*pi = 0)\ // 0 for And(im(x) = 0, 7*x mod pi = 0)\ // 1 for And(im(x) = 0, 3*x mod 2*pi = 0)\
|| | || | || | || |
| 0 for And(im(x) = 0, 3*x mod pi = 0) |*| 1 for And(im(x) = 0, 7*x mod 2*pi = 0) | + | 0 for And(im(x) = 0, 7*x mod pi = 0) |*| 1 for And(im(x) = 0, 3*x mod 2*pi = 0) |
||< otherwise | ||< otherwise | ||< otherwise | ||< otherwise |
\\\sin(3*x) otherwise / \\\cos(7*x) otherwise / \\\sin(7*x) otherwise / \\\cos(3*x) otherwise /
$$\left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 3 x \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 3 x \bmod \pi = 0 \\\sin{\left(3 x \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 7 x \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 7 x \bmod 2 \pi = 0 \\\cos{\left(7 x \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right) + \left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 7 x \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 7 x \bmod \pi = 0 \\\sin{\left(7 x \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 3 x \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 3 x \bmod 2 \pi = 0 \\\cos{\left(3 x \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right)$$
// 0 for And(im(x) = 0, 3*x mod pi = 0)\ // 1 for And(im(x) = 0, 7*x mod 2*pi = 0)\ // 0 for And(im(x) = 0, 7*x mod pi = 0)\ // 1 for And(im(x) = 0, 3*x mod 2*pi = 0)\
|| | || | || | || |
|| /3*x\ | || 2/7*x\ | || /7*x\ | || 2/3*x\ |
|| 2*cot|---| | ||-1 + cot |---| | || 2*cot|---| | ||-1 + cot |---| |
|< \ 2 / |*|< \ 2 / | + |< \ 2 / |*|< \ 2 / |
||------------- otherwise | ||-------------- otherwise | ||------------- otherwise | ||-------------- otherwise |
|| 2/3*x\ | || 2/7*x\ | || 2/7*x\ | || 2/3*x\ |
||1 + cot |---| | ||1 + cot |---| | ||1 + cot |---| | ||1 + cot |---| |
\\ \ 2 / / \\ \ 2 / / \\ \ 2 / / \\ \ 2 / /
$$\left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 3 x \bmod \pi = 0 \\\frac{2 \cot{\left(\frac{3 x}{2} \right)}}{\cot^{2}{\left(\frac{3 x}{2} \right)} + 1} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 7 x \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{7 x}{2} \right)} - 1}{\cot^{2}{\left(\frac{7 x}{2} \right)} + 1} & \text{otherwise} \end{cases}\right)\right) + \left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 7 x \bmod \pi = 0 \\\frac{2 \cot{\left(\frac{7 x}{2} \right)}}{\cot^{2}{\left(\frac{7 x}{2} \right)} + 1} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 3 x \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{3 x}{2} \right)} - 1}{\cot^{2}{\left(\frac{3 x}{2} \right)} + 1} & \text{otherwise} \end{cases}\right)\right)$$
$$\sin{\left(10 x \right)}$$
/ 0 for And(im(x) = 0, 10*x mod pi = 0)
|
| 2*cot(5*x)
<------------- otherwise
| 2
|1 + cot (5*x)
\
$$\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 10 x \bmod \pi = 0 \\\frac{2 \cot{\left(5 x \right)}}{\cot^{2}{\left(5 x \right)} + 1} & \text{otherwise} \end{cases}$$
// 0 for And(im(x) = 0, 3*x mod pi = 0)\ // 1 for And(im(x) = 0, 7*x mod 2*pi = 0)\ // 0 for And(im(x) = 0, 7*x mod pi = 0)\ // 1 for And(im(x) = 0, 3*x mod 2*pi = 0)\
|< |*|< | + |< |*|< |
\\sin(3*x) otherwise / \\cos(7*x) otherwise / \\sin(7*x) otherwise / \\cos(3*x) otherwise /
$$\left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 3 x \bmod \pi = 0 \\\sin{\left(3 x \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 7 x \bmod 2 \pi = 0 \\\cos{\left(7 x \right)} & \text{otherwise} \end{cases}\right)\right) + \left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 7 x \bmod \pi = 0 \\\sin{\left(7 x \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 3 x \bmod 2 \pi = 0 \\\cos{\left(3 x \right)} & \text{otherwise} \end{cases}\right)\right)$$
/ pi\
cos|10*x - --|
\ 2 /
$$\cos{\left(10 x - \frac{\pi}{2} \right)}$$
/pi \ /pi \
sin(3*x)*sin|-- + 7*x| + sin(7*x)*sin|-- + 3*x|
\2 / \2 /$$\sin{\left(3 x \right)} \sin{\left(7 x + \frac{\pi}{2} \right)} + \sin{\left(7 x \right)} \sin{\left(3 x + \frac{\pi}{2} \right)}$$
1
--------------
/ pi\
sec|10*x - --|
\ 2 /
$$\frac{1}{\sec{\left(10 x - \frac{\pi}{2} \right)}}$$
// 0 for And(im(x) = 0, 3*x mod pi = 0)\ // 1 for And(im(x) = 0, 7*x mod 2*pi = 0)\ // 0 for And(im(x) = 0, 7*x mod pi = 0)\ // 1 for And(im(x) = 0, 3*x mod 2*pi = 0)\
|| | || | || | || |
||/ 0 for And(im(x) = 0, 3*x mod pi = 0) | ||/ 1 for And(im(x) = 0, 7*x mod 2*pi = 0) | ||/ 0 for And(im(x) = 0, 7*x mod pi = 0) | ||/ 1 for And(im(x) = 0, 3*x mod 2*pi = 0) |
||| | ||| | ||| | ||| |
||| /3*x\ | ||| 2/7*x\ | ||| /7*x\ | ||| 2/3*x\ |
|<| 2*cot|---| |*|<|-1 + cot |---| | + |<| 2*cot|---| |*|<|-1 + cot |---| |
||< \ 2 / otherwise | ||< \ 2 / otherwise | ||< \ 2 / otherwise | ||< \ 2 / otherwise |
|||------------- otherwise | |||-------------- otherwise | |||------------- otherwise | |||-------------- otherwise |
||| 2/3*x\ | ||| 2/7*x\ | ||| 2/7*x\ | ||| 2/3*x\ |
|||1 + cot |---| | |||1 + cot |---| | |||1 + cot |---| | |||1 + cot |---| |
\\\ \ 2 / / \\\ \ 2 / / \\\ \ 2 / / \\\ \ 2 / /
$$\left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 3 x \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 3 x \bmod \pi = 0 \\\frac{2 \cot{\left(\frac{3 x}{2} \right)}}{\cot^{2}{\left(\frac{3 x}{2} \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 7 x \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 7 x \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{7 x}{2} \right)} - 1}{\cot^{2}{\left(\frac{7 x}{2} \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right) + \left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 7 x \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 7 x \bmod \pi = 0 \\\frac{2 \cot{\left(\frac{7 x}{2} \right)}}{\cot^{2}{\left(\frac{7 x}{2} \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 3 x \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 3 x \bmod 2 \pi = 0 \\\frac{\cot^{2}{\left(\frac{3 x}{2} \right)} - 1}{\cot^{2}{\left(\frac{3 x}{2} \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right)$$
// 0 for And(im(x) = 0, 3*x mod pi = 0)\ // 0 for And(im(x) = 0, 7*x mod pi = 0)\
|| | // 1 for And(im(x) = 0, 7*x mod 2*pi = 0)\ || | // 1 for And(im(x) = 0, 3*x mod 2*pi = 0)\
|< / pi\ |*|< | + |< / pi\ |*|< |
||cos|3*x - --| otherwise | \\cos(7*x) otherwise / ||cos|7*x - --| otherwise | \\cos(3*x) otherwise /
\\ \ 2 / / \\ \ 2 / /
$$\left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 3 x \bmod \pi = 0 \\\cos{\left(3 x - \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 7 x \bmod 2 \pi = 0 \\\cos{\left(7 x \right)} & \text{otherwise} \end{cases}\right)\right) + \left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 7 x \bmod \pi = 0 \\\cos{\left(7 x - \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 3 x \bmod 2 \pi = 0 \\\cos{\left(3 x \right)} & \text{otherwise} \end{cases}\right)\right)$$
// 0 for And(im(x) = 0, 3*x mod pi = 0)\ // 1 for And(im(x) = 0, 7*x mod 2*pi = 0)\ // 0 for And(im(x) = 0, 7*x mod pi = 0)\ // 1 for And(im(x) = 0, 3*x mod 2*pi = 0)\
|| | || | || | || |
|| /3*x\ | || 2/7*x\ | || /7*x\ | || 2/3*x\ |
|| 2*tan|---| | ||1 - tan |---| | || 2*tan|---| | ||1 - tan |---| |
|< \ 2 / |*|< \ 2 / | + |< \ 2 / |*|< \ 2 / |
||------------- otherwise | ||------------- otherwise | ||------------- otherwise | ||------------- otherwise |
|| 2/3*x\ | || 2/7*x\ | || 2/7*x\ | || 2/3*x\ |
||1 + tan |---| | ||1 + tan |---| | ||1 + tan |---| | ||1 + tan |---| |
\\ \ 2 / / \\ \ 2 / / \\ \ 2 / / \\ \ 2 / /
$$\left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 3 x \bmod \pi = 0 \\\frac{2 \tan{\left(\frac{3 x}{2} \right)}}{\tan^{2}{\left(\frac{3 x}{2} \right)} + 1} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 7 x \bmod 2 \pi = 0 \\\frac{1 - \tan^{2}{\left(\frac{7 x}{2} \right)}}{\tan^{2}{\left(\frac{7 x}{2} \right)} + 1} & \text{otherwise} \end{cases}\right)\right) + \left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 7 x \bmod \pi = 0 \\\frac{2 \tan{\left(\frac{7 x}{2} \right)}}{\tan^{2}{\left(\frac{7 x}{2} \right)} + 1} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 3 x \bmod 2 \pi = 0 \\\frac{1 - \tan^{2}{\left(\frac{3 x}{2} \right)}}{\tan^{2}{\left(\frac{3 x}{2} \right)} + 1} & \text{otherwise} \end{cases}\right)\right)$$
// 1 for And(im(x) = 0, 7*x mod 2*pi = 0)\ // 1 for And(im(x) = 0, 3*x mod 2*pi = 0)\
// 0 for And(im(x) = 0, 3*x mod pi = 0)\ || | // 0 for And(im(x) = 0, 7*x mod pi = 0)\ || |
|| | || 1 | || | || 1 |
|< 1 |*|<------------- otherwise | + |< 1 |*|<------------- otherwise |
||-------- otherwise | || /pi \ | ||-------- otherwise | || /pi \ |
\\csc(3*x) / ||csc|-- - 7*x| | \\csc(7*x) / ||csc|-- - 3*x| |
\\ \2 / / \\ \2 / /$$\left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 3 x \bmod \pi = 0 \\\frac{1}{\csc{\left(3 x \right)}} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 7 x \bmod 2 \pi = 0 \\\frac{1}{\csc{\left(- 7 x + \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right)\right) + \left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 7 x \bmod \pi = 0 \\\frac{1}{\csc{\left(7 x \right)}} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge 3 x \bmod 2 \pi = 0 \\\frac{1}{\csc{\left(- 3 x + \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right)\right)$$