Общий знаменатель 3*(x+1)^2/(x+2)^2+(x+1)^3*(-4-2*x)/(x+2)^4

Учитель очень удивится увидев твоё верное решение 😼

Решение

Вы ввели [src]
         2          3           
3*(x + 1)    (x + 1) *(-4 - 2*x)
---------- + -------------------
        2                 4     
 (x + 2)           (x + 2)      
$$\frac{\left(x + 1\right)^{3}}{\left(x + 2\right)^{4}} \left(- 2 x - 4\right) + \frac{3 \left(x + 1\right)^{2}}{\left(x + 2\right)^{2}}$$
Численный ответ [src]
3.0*(1.0 + x)^2/(2.0 + x)^2 + (1.0 + x)^3*(-4.0 - 2.0*x)/(2.0 + x)^4
Рациональный знаменатель [src]
         2        4          3        2           
3*(1 + x) *(2 + x)  + (1 + x) *(2 + x) *(-4 - 2*x)
--------------------------------------------------
                            6                     
                     (2 + x)                      
$$\frac{1}{\left(x + 2\right)^{6}} \left(\left(- 2 x - 4\right) \left(x + 1\right)^{3} \left(x + 2\right)^{2} + 3 \left(x + 1\right)^{2} \left(x + 2\right)^{4}\right)$$
Объединение рациональных выражений [src]
       2 /         2                     \
(1 + x) *\3*(2 + x)  + 2*(1 + x)*(-2 - x)/
------------------------------------------
                        4                 
                 (2 + x)                  
$$\frac{\left(x + 1\right)^{2}}{\left(x + 2\right)^{4}} \left(2 \left(- x - 2\right) \left(x + 1\right) + 3 \left(x + 2\right)^{2}\right)$$
Общее упрощение [src]
       2        
(1 + x) *(4 + x)
----------------
           3    
    (2 + x)     
$$\frac{\left(x + 1\right)^{2} \left(x + 4\right)}{\left(x + 2\right)^{3}}$$
Комбинаторика [src]
       2        
(1 + x) *(4 + x)
----------------
           3    
    (2 + x)     
$$\frac{\left(x + 1\right)^{2} \left(x + 4\right)}{\left(x + 2\right)^{3}}$$
Общий знаменатель [src]
          4 + 3*x       
1 - --------------------
         3      2       
    8 + x  + 6*x  + 12*x
$$- \frac{3 x + 4}{x^{3} + 6 x^{2} + 12 x + 8} + 1$$