Тригонометрическая часть
[src] 25 25
--------------- + --------------------
2 2 2 2/ pi\
sec (x)*sec (y) sec (x)*sec |y - --|
\ 2 /
$$\frac{25}{\sec^{2}{\left(x \right)} \sec^{2}{\left(y - \frac{\pi}{2} \right)}} + \frac{25}{\sec^{2}{\left(x \right)} \sec^{2}{\left(y \right)}}$$
// 0 for And(im(y) = 0, y mod pi = 0)\ // 1 for And(im(x) = 0, x mod 2*pi = 0)\ // 1 for And(im(x) = 0, x mod 2*pi = 0)\ // 1 for And(im(y) = 0, y mod 2*pi = 0)\
|| | || | || | || |
|| 1 | || 1 | || 1 | || 1 |
25*|<------- otherwise |*|<------------ otherwise | + 25*|<------------ otherwise |*|<------------ otherwise |
|| 2 | || 2/pi \ | || 2/pi \ | || 2/pi \ |
||csc (y) | ||csc |-- - x| | ||csc |-- - x| | ||csc |-- - y| |
\\ / \\ \2 / / \\ \2 / / \\ \2 / /
$$\left(25 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(y\right)} = 0 \wedge y \bmod \pi = 0 \\\frac{1}{\csc^{2}{\left(y \right)}} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod 2 \pi = 0 \\\frac{1}{\csc^{2}{\left(- x + \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right)\right) + \left(25 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod 2 \pi = 0 \\\frac{1}{\csc^{2}{\left(- x + \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(y\right)} = 0 \wedge y \bmod 2 \pi = 0 \\\frac{1}{\csc^{2}{\left(- y + \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right)\right)$$
25 25*cos(2*x)
-- + -----------
2 2
$$\frac{25 \cos{\left(2 x \right)}}{2} + \frac{25}{2}$$
2 2 2
/ 2/x\\ / 2/y\\ / 2/x\\ 2/y\
25*|1 - tan |-|| *|1 - tan |-|| 100*|1 - tan |-|| *tan |-|
\ \2// \ \2// \ \2// \2/
-------------------------------- + -----------------------------
2 2 2 2
/ 2/x\\ / 2/y\\ / 2/x\\ / 2/y\\
|1 + tan |-|| *|1 + tan |-|| |1 + tan |-|| *|1 + tan |-||
\ \2// \ \2// \ \2// \ \2//
$$\frac{25 \left(1 - \tan^{2}{\left(\frac{x}{2} \right)}\right)^{2} \left(1 - \tan^{2}{\left(\frac{y}{2} \right)}\right)^{2}}{\left(\tan^{2}{\left(\frac{x}{2} \right)} + 1\right)^{2} \left(\tan^{2}{\left(\frac{y}{2} \right)} + 1\right)^{2}} + \frac{100 \left(1 - \tan^{2}{\left(\frac{x}{2} \right)}\right)^{2} \tan^{2}{\left(\frac{y}{2} \right)}}{\left(\tan^{2}{\left(\frac{x}{2} \right)} + 1\right)^{2} \left(\tan^{2}{\left(\frac{y}{2} \right)} + 1\right)^{2}}$$
2 2
/ /x\ \ / /x\ \
| sec|-| | | sec|-| |
| \2/ | | \2/ |
25*|1 + -----------| *|-1 + -----------|
| /x pi\| | /x pi\|
| sec|- - --|| | sec|- - --||
\ \2 2 // \ \2 2 //
-----------------------------------------
4/x\
sec |-|
\2/
$$\frac{25 \left(\frac{\sec{\left(\frac{x}{2} \right)}}{\sec{\left(\frac{x}{2} - \frac{\pi}{2} \right)}} - 1\right)^{2} \left(\frac{\sec{\left(\frac{x}{2} \right)}}{\sec{\left(\frac{x}{2} - \frac{\pi}{2} \right)}} + 1\right)^{2}}{\sec^{4}{\left(\frac{x}{2} \right)}}$$
// 0 for And(im(y) = 0, y mod pi = 0)\ // 1 for And(im(x) = 0, x mod 2*pi = 0)\ // 1 for And(im(x) = 0, x mod 2*pi = 0)\ // 1 for And(im(y) = 0, y mod 2*pi = 0)\
|| | || | || | || |
25*|< 2 |*|< 2/ pi\ | + 25*|< 2/ pi\ |*|< 2/ pi\ |
||sin (y) otherwise | ||sin |x + --| otherwise | ||sin |x + --| otherwise | ||sin |y + --| otherwise |
\\ / \\ \ 2 / / \\ \ 2 / / \\ \ 2 / /
$$\left(25 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(y\right)} = 0 \wedge y \bmod \pi = 0 \\\sin^{2}{\left(y \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod 2 \pi = 0 \\\sin^{2}{\left(x + \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right)\right) + \left(25 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod 2 \pi = 0 \\\sin^{2}{\left(x + \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(y\right)} = 0 \wedge y \bmod 2 \pi = 0 \\\sin^{2}{\left(y + \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right)\right)$$
2
/ 2/x\\
25*|1 - tan |-||
\ \2//
-----------------
2
/ 2/x\\
|1 + tan |-||
\ \2//
$$\frac{25 \left(1 - \tan^{2}{\left(\frac{x}{2} \right)}\right)^{2}}{\left(\tan^{2}{\left(\frac{x}{2} \right)} + 1\right)^{2}}$$
2 2 2 2/ pi\
25*cos (x)*cos (y) + 25*cos (x)*cos |y - --|
\ 2 /
$$25 \cos^{2}{\left(x \right)} \cos^{2}{\left(y \right)} + 25 \cos^{2}{\left(x \right)} \cos^{2}{\left(y - \frac{\pi}{2} \right)}$$
25 25
--------------- + ---------------
2 2 2 2
csc (y)*sec (x) sec (x)*sec (y)
$$\frac{25}{\sec^{2}{\left(x \right)} \sec^{2}{\left(y \right)}} + \frac{25}{\csc^{2}{\left(y \right)} \sec^{2}{\left(x \right)}}$$
$$25 \cos^{2}{\left(x \right)}$$
2/ pi\
25*sin |x + --|
\ 2 /
$$25 \sin^{2}{\left(x + \frac{\pi}{2} \right)}$$
// / x \\
|| 1 for And|im(x) = 0, - mod 2*pi = 0||
2 2 || \ 2 /|
/ /x\\ / /x\\ || |
25*|1 + tan|-|| *|-1 + tan|-|| *|< 4 |
\ \2// \ \2// ||/ 2/x\\ 8/x\ |
|||-1 + cot |-|| *sin |-| otherwise |
||\ \4// \4/ |
\\ /
$$25 \left(\tan{\left(\frac{x}{2} \right)} - 1\right)^{2} \left(\tan{\left(\frac{x}{2} \right)} + 1\right)^{2} \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge \frac{x}{2} \bmod 2 \pi = 0 \\\left(\cot^{2}{\left(\frac{x}{4} \right)} - 1\right)^{4} \sin^{8}{\left(\frac{x}{4} \right)} & \text{otherwise} \end{cases}\right)$$
2 2
/ /x pi\\ / /x pi\\
| cos|- - --|| | cos|- - --||
| \2 2 /| | \2 2 /| 4/x\
25*|1 + -----------| *|-1 + -----------| *cos |-|
| /x\ | | /x\ | \2/
| cos|-| | | cos|-| |
\ \2/ / \ \2/ /
$$25 \left(-1 + \frac{\cos{\left(\frac{x}{2} - \frac{\pi}{2} \right)}}{\cos{\left(\frac{x}{2} \right)}}\right)^{2} \left(1 + \frac{\cos{\left(\frac{x}{2} - \frac{\pi}{2} \right)}}{\cos{\left(\frac{x}{2} \right)}}\right)^{2} \cos^{4}{\left(\frac{x}{2} \right)}$$
2 2
/ 1 1 \ / 1 1 \ 4/x\
25*|1 + ------ - ------| *|-1 + ------ - ------| *cos |-|
\ sin(x) tan(x)/ \ sin(x) tan(x)/ \2/
$$25 \left(-1 - \frac{1}{\tan{\left(x \right)}} + \frac{1}{\sin{\left(x \right)}}\right)^{2} \left(1 - \frac{1}{\tan{\left(x \right)}} + \frac{1}{\sin{\left(x \right)}}\right)^{2} \cos^{4}{\left(\frac{x}{2} \right)}$$
2 2/ pi\ 2/ pi\ 2/ pi\
25*sin (y)*sin |x + --| + 25*sin |x + --|*sin |y + --|
\ 2 / \ 2 / \ 2 /
$$25 \sin^{2}{\left(y \right)} \sin^{2}{\left(x + \frac{\pi}{2} \right)} + 25 \sin^{2}{\left(x + \frac{\pi}{2} \right)} \sin^{2}{\left(y + \frac{\pi}{2} \right)}$$
2 2
/ /pi x\\ / /pi x\\
| csc|-- - -|| | csc|-- - -||
| \2 2/| | \2 2/|
25*|1 + -----------| *|-1 + -----------|
| /x\ | | /x\ |
| csc|-| | | csc|-| |
\ \2/ / \ \2/ /
-----------------------------------------
4/pi x\
csc |-- - -|
\2 2/
$$\frac{25 \left(-1 + \frac{\csc{\left(- \frac{x}{2} + \frac{\pi}{2} \right)}}{\csc{\left(\frac{x}{2} \right)}}\right)^{2} \left(1 + \frac{\csc{\left(- \frac{x}{2} + \frac{\pi}{2} \right)}}{\csc{\left(\frac{x}{2} \right)}}\right)^{2}}{\csc^{4}{\left(- \frac{x}{2} + \frac{\pi}{2} \right)}}$$
// 1 for And(im(x) = 0, x mod 2*pi = 0)\
|| |
25*|< 2 |
||cos (x) otherwise |
\\ /
$$25 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod 2 \pi = 0 \\\cos^{2}{\left(x \right)} & \text{otherwise} \end{cases}\right)$$
// 0 for And(im(y) = 0, y mod pi = 0)\ // 1 for And(im(x) = 0, x mod 2*pi = 0)\ // 1 for And(im(x) = 0, x mod 2*pi = 0)\ // 1 for And(im(y) = 0, y mod 2*pi = 0)\
|| | || | || | || |
|| 2/y\ | || 2 | || 2 | || 2 |
|| 4*cot |-| | ||/ 2/x\\ | ||/ 2/x\\ | ||/ 2/y\\ |
|| \2/ | |||-1 + cot |-|| | |||-1 + cot |-|| | |||-1 + cot |-|| |
25*|<-------------- otherwise |*|<\ \2// | + 25*|<\ \2// |*|<\ \2// |
|| 2 | ||--------------- otherwise | ||--------------- otherwise | ||--------------- otherwise |
||/ 2/y\\ | || 2 | || 2 | || 2 |
|||1 + cot |-|| | || / 2/x\\ | || / 2/x\\ | || / 2/y\\ |
||\ \2// | || |1 + cot |-|| | || |1 + cot |-|| | || |1 + cot |-|| |
\\ / \\ \ \2// / \\ \ \2// / \\ \ \2// /
$$\left(25 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(y\right)} = 0 \wedge y \bmod \pi = 0 \\\frac{4 \cot^{2}{\left(\frac{y}{2} \right)}}{\left(\cot^{2}{\left(\frac{y}{2} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod 2 \pi = 0 \\\frac{\left(\cot^{2}{\left(\frac{x}{2} \right)} - 1\right)^{2}}{\left(\cot^{2}{\left(\frac{x}{2} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases}\right)\right) + \left(25 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod 2 \pi = 0 \\\frac{\left(\cot^{2}{\left(\frac{x}{2} \right)} - 1\right)^{2}}{\left(\cot^{2}{\left(\frac{x}{2} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(y\right)} = 0 \wedge y \bmod 2 \pi = 0 \\\frac{\left(\cot^{2}{\left(\frac{y}{2} \right)} - 1\right)^{2}}{\left(\cot^{2}{\left(\frac{y}{2} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases}\right)\right)$$
25 25
-------------------- + -------------------------
2 2/pi \ 2/pi \ 2/pi \
csc (y)*csc |-- - x| csc |-- - x|*csc |-- - y|
\2 / \2 / \2 /
$$\frac{25}{\csc^{2}{\left(- x + \frac{\pi}{2} \right)} \csc^{2}{\left(- y + \frac{\pi}{2} \right)}} + \frac{25}{\csc^{2}{\left(y \right)} \csc^{2}{\left(- x + \frac{\pi}{2} \right)}}$$
$$\frac{25}{\sec^{2}{\left(x \right)}}$$
// 1 for And(im(x) = 0, x mod 2*pi = 0)\
|| |
|| 2 |
||/ 2/x\\ |
|||-1 + cot |-|| |
25*|<\ \2// |
||--------------- otherwise |
|| 2 |
|| / 2/x\\ |
|| |1 + cot |-|| |
\\ \ \2// /
$$25 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod 2 \pi = 0 \\\frac{\left(\cot^{2}{\left(\frac{x}{2} \right)} - 1\right)^{2}}{\left(\cot^{2}{\left(\frac{x}{2} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases}\right)$$
25
------------
2/pi \
csc |-- - x|
\2 /
$$\frac{25}{\csc^{2}{\left(- x + \frac{\pi}{2} \right)}}$$
// 0 for And(im(y) = 0, y mod pi = 0)\ // 1 for And(im(x) = 0, x mod 2*pi = 0)\ // 1 for And(im(x) = 0, x mod 2*pi = 0)\ // 1 for And(im(y) = 0, y mod 2*pi = 0)\
|| | || | || | || |
25*|< 2/ pi\ |*|< 2 | + 25*|< 2 |*|< 2 |
||cos |y - --| otherwise | ||cos (x) otherwise | ||cos (x) otherwise | ||cos (y) otherwise |
\\ \ 2 / / \\ / \\ / \\ /
$$\left(25 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(y\right)} = 0 \wedge y \bmod \pi = 0 \\\cos^{2}{\left(y - \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod 2 \pi = 0 \\\cos^{2}{\left(x \right)} & \text{otherwise} \end{cases}\right)\right) + \left(25 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod 2 \pi = 0 \\\cos^{2}{\left(x \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(y\right)} = 0 \wedge y \bmod 2 \pi = 0 \\\cos^{2}{\left(y \right)} & \text{otherwise} \end{cases}\right)\right)$$
2 2
/ 2/x\\ / 2/x\\
| 2*sin |-|| | 2*sin |-||
| \2/| | \2/| 4/pi x\
25*|1 + ---------| *|-1 + ---------| *sin |-- + -|
\ sin(x) / \ sin(x) / \2 2/
$$25 \left(\frac{2 \sin^{2}{\left(\frac{x}{2} \right)}}{\sin{\left(x \right)}} - 1\right)^{2} \left(\frac{2 \sin^{2}{\left(\frac{x}{2} \right)}}{\sin{\left(x \right)}} + 1\right)^{2} \sin^{4}{\left(\frac{x}{2} + \frac{\pi}{2} \right)}$$
// 0 for And(im(y) = 0, y mod pi = 0)\ // 1 for And(im(x) = 0, x mod 2*pi = 0)\ // 1 for And(im(x) = 0, x mod 2*pi = 0)\ // 1 for And(im(y) = 0, y mod 2*pi = 0)\
|| | || | || | || |
|| 1 | || 1 | || 1 | || 1 |
25*|<------------ otherwise |*|<------- otherwise | + 25*|<------- otherwise |*|<------- otherwise |
|| 2/ pi\ | || 2 | || 2 | || 2 |
||sec |y - --| | ||sec (x) | ||sec (x) | ||sec (y) |
\\ \ 2 / / \\ / \\ / \\ /
$$\left(25 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(y\right)} = 0 \wedge y \bmod \pi = 0 \\\frac{1}{\sec^{2}{\left(y - \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod 2 \pi = 0 \\\frac{1}{\sec^{2}{\left(x \right)}} & \text{otherwise} \end{cases}\right)\right) + \left(25 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod 2 \pi = 0 \\\frac{1}{\sec^{2}{\left(x \right)}} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(y\right)} = 0 \wedge y \bmod 2 \pi = 0 \\\frac{1}{\sec^{2}{\left(y \right)}} & \text{otherwise} \end{cases}\right)\right)$$
// 0 for And(im(y) = 0, y mod pi = 0)\ // 1 for And(im(x) = 0, x mod 2*pi = 0)\ // 1 for And(im(x) = 0, x mod 2*pi = 0)\ // 1 for And(im(y) = 0, y mod 2*pi = 0)\
|| | || | || | || |
|| 2/y\ | || 2 | || 2 | || 2 |
|| 4*tan |-| | ||/ 2/x\\ | ||/ 2/x\\ | ||/ 2/y\\ |
|| \2/ | |||1 - tan |-|| | |||1 - tan |-|| | |||1 - tan |-|| |
25*|<-------------- otherwise |*|<\ \2// | + 25*|<\ \2// |*|<\ \2// |
|| 2 | ||-------------- otherwise | ||-------------- otherwise | ||-------------- otherwise |
||/ 2/y\\ | || 2 | || 2 | || 2 |
|||1 + tan |-|| | ||/ 2/x\\ | ||/ 2/x\\ | ||/ 2/y\\ |
||\ \2// | |||1 + tan |-|| | |||1 + tan |-|| | |||1 + tan |-|| |
\\ / \\\ \2// / \\\ \2// / \\\ \2// /
$$\left(25 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(y\right)} = 0 \wedge y \bmod \pi = 0 \\\frac{4 \tan^{2}{\left(\frac{y}{2} \right)}}{\left(\tan^{2}{\left(\frac{y}{2} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod 2 \pi = 0 \\\frac{\left(1 - \tan^{2}{\left(\frac{x}{2} \right)}\right)^{2}}{\left(\tan^{2}{\left(\frac{x}{2} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases}\right)\right) + \left(25 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod 2 \pi = 0 \\\frac{\left(1 - \tan^{2}{\left(\frac{x}{2} \right)}\right)^{2}}{\left(\tan^{2}{\left(\frac{x}{2} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(y\right)} = 0 \wedge y \bmod 2 \pi = 0 \\\frac{\left(1 - \tan^{2}{\left(\frac{y}{2} \right)}\right)^{2}}{\left(\tan^{2}{\left(\frac{y}{2} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases}\right)\right)$$
4 2 2
/ 2/x\\ / /x\\ / /x\\ 8/x\
25*|1 - tan |-|| *|1 + tan|-|| *|-1 + tan|-|| *cos |-|
\ \4// \ \2// \ \2// \4/
$$25 \left(1 - \tan^{2}{\left(\frac{x}{4} \right)}\right)^{4} \left(\tan{\left(\frac{x}{2} \right)} - 1\right)^{2} \left(\tan{\left(\frac{x}{2} \right)} + 1\right)^{2} \cos^{8}{\left(\frac{x}{4} \right)}$$
// / x \\
|| 1 for And|im(x) = 0, - mod 2*pi = 0||
|| \ 2 /|
|| |
2 2 || 4 |
/ 1 \ / 1 \ ||/ 2/x\\ |
25*|1 + ------| *|-1 + ------| *|<|-1 + cot |-|| |
| /x\| | /x\| ||\ \4// |
| cot|-|| | cot|-|| ||--------------- otherwise |
\ \2// \ \2// || 4 |
|| / 2/x\\ |
|| |1 + cot |-|| |
\\ \ \4// /
$$25 \left(-1 + \frac{1}{\cot{\left(\frac{x}{2} \right)}}\right)^{2} \left(1 + \frac{1}{\cot{\left(\frac{x}{2} \right)}}\right)^{2} \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge \frac{x}{2} \bmod 2 \pi = 0 \\\frac{\left(\cot^{2}{\left(\frac{x}{4} \right)} - 1\right)^{4}}{\left(\cot^{2}{\left(\frac{x}{4} \right)} + 1\right)^{4}} & \text{otherwise} \end{cases}\right)$$
// 0 for And(im(y) = 0, y mod pi = 0)\ // 1 for And(im(x) = 0, x mod 2*pi = 0)\ // 1 for And(im(x) = 0, x mod 2*pi = 0)\ // 1 for And(im(y) = 0, y mod 2*pi = 0)\
|| | || | || | || |
||/ 0 for And(im(y) = 0, y mod pi = 0) | ||/ 1 for And(im(x) = 0, x mod 2*pi = 0) | ||/ 1 for And(im(x) = 0, x mod 2*pi = 0) | ||/ 1 for And(im(y) = 0, y mod 2*pi = 0) |
||| | ||| | ||| | ||| |
||| 2/y\ | ||| 2 | ||| 2 | ||| 2 |
||| 4*cot |-| | |||/ 2/x\\ | |||/ 2/x\\ | |||/ 2/y\\ |
25*|<| \2/ |*|<||-1 + cot |-|| | + 25*|<||-1 + cot |-|| |*|<||-1 + cot |-|| |
||<-------------- otherwise otherwise | ||<\ \2// otherwise | ||<\ \2// otherwise | ||<\ \2// otherwise |
||| 2 | |||--------------- otherwise | |||--------------- otherwise | |||--------------- otherwise |
|||/ 2/y\\ | ||| 2 | ||| 2 | ||| 2 |
||||1 + cot |-|| | ||| / 2/x\\ | ||| / 2/x\\ | ||| / 2/y\\ |
|||\ \2// | ||| |1 + cot |-|| | ||| |1 + cot |-|| | ||| |1 + cot |-|| |
\\\ / \\\ \ \2// / \\\ \ \2// / \\\ \ \2// /
$$\left(25 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(y\right)} = 0 \wedge y \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(y\right)} = 0 \wedge y \bmod \pi = 0 \\\frac{4 \cot^{2}{\left(\frac{y}{2} \right)}}{\left(\cot^{2}{\left(\frac{y}{2} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod 2 \pi = 0 \\\frac{\left(\cot^{2}{\left(\frac{x}{2} \right)} - 1\right)^{2}}{\left(\cot^{2}{\left(\frac{x}{2} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right) + \left(25 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod 2 \pi = 0 \\\frac{\left(\cot^{2}{\left(\frac{x}{2} \right)} - 1\right)^{2}}{\left(\cot^{2}{\left(\frac{x}{2} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(y\right)} = 0 \wedge y \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(y\right)} = 0 \wedge y \bmod 2 \pi = 0 \\\frac{\left(\cot^{2}{\left(\frac{y}{2} \right)} - 1\right)^{2}}{\left(\cot^{2}{\left(\frac{y}{2} \right)} + 1\right)^{2}} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right)$$
// 0 for And(im(y) = 0, y mod pi = 0)\ // 1 for And(im(x) = 0, x mod 2*pi = 0)\ // 1 for And(im(x) = 0, x mod 2*pi = 0)\ // 1 for And(im(y) = 0, y mod 2*pi = 0)\
|| | || | || | || |
||/ 0 for And(im(y) = 0, y mod pi = 0) | ||/ 1 for And(im(x) = 0, x mod 2*pi = 0) | ||/ 1 for And(im(x) = 0, x mod 2*pi = 0) | ||/ 1 for And(im(y) = 0, y mod 2*pi = 0) |
25*|<| |*|<| | + 25*|<| |*|<| |
||< 2 otherwise | ||< 2 otherwise | ||< 2 otherwise | ||< 2 otherwise |
|||sin (y) otherwise | |||cos (x) otherwise | |||cos (x) otherwise | |||cos (y) otherwise |
\\\ / \\\ / \\\ / \\\ /
$$\left(25 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(y\right)} = 0 \wedge y \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(y\right)} = 0 \wedge y \bmod \pi = 0 \\\sin^{2}{\left(y \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod 2 \pi = 0 \\\cos^{2}{\left(x \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right) + \left(25 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod 2 \pi = 0 \\\cos^{2}{\left(x \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(y\right)} = 0 \wedge y \bmod 2 \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(y\right)} = 0 \wedge y \bmod 2 \pi = 0 \\\cos^{2}{\left(y \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right)$$
4 2 2
/ 2/x\\ / /x\\ / /x\\
25*|1 - tan |-|| *|1 + tan|-|| *|-1 + tan|-||
\ \4// \ \2// \ \2//
----------------------------------------------
4
/ 2/x\\
|1 + tan |-||
\ \4//
$$\frac{25 \left(1 - \tan^{2}{\left(\frac{x}{4} \right)}\right)^{4} \left(\tan{\left(\frac{x}{2} \right)} - 1\right)^{2} \left(\tan{\left(\frac{x}{2} \right)} + 1\right)^{2}}{\left(\tan^{2}{\left(\frac{x}{4} \right)} + 1\right)^{4}}$$
// 0 for And(im(y) = 0, y mod pi = 0)\ // 1 for And(im(x) = 0, x mod 2*pi = 0)\ // 1 for And(im(x) = 0, x mod 2*pi = 0)\ // 1 for And(im(y) = 0, y mod 2*pi = 0)\
|| | || | || | || |
25*|< 2 |*|< 2 | + 25*|< 2 |*|< 2 |
||sin (y) otherwise | ||cos (x) otherwise | ||cos (x) otherwise | ||cos (y) otherwise |
\\ / \\ / \\ / \\ /
$$\left(25 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(y\right)} = 0 \wedge y \bmod \pi = 0 \\\sin^{2}{\left(y \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod 2 \pi = 0 \\\cos^{2}{\left(x \right)} & \text{otherwise} \end{cases}\right)\right) + \left(25 \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(x\right)} = 0 \wedge x \bmod 2 \pi = 0 \\\cos^{2}{\left(x \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(y\right)} = 0 \wedge y \bmod 2 \pi = 0 \\\cos^{2}{\left(y \right)} & \text{otherwise} \end{cases}\right)\right)$$
2 2
/ /x\\ / /x\\ 4/x\
25*|1 + tan|-|| *|-1 + tan|-|| *cos |-|
\ \2// \ \2// \2/
$$25 \left(\tan{\left(\frac{x}{2} \right)} - 1\right)^{2} \left(\tan{\left(\frac{x}{2} \right)} + 1\right)^{2} \cos^{4}{\left(\frac{x}{2} \right)}$$