/ 2 2 \
4 |(y - x) - (x + y) + 4*x*y|
x *|-------- + ------------------|
| 2 2 |
\ x x - x*y /
----------------------------------
4 2 2
- y + x *y
$$\frac{x^{4}}{x^{2} y^{2} - y^{4}} \left(\frac{4 x y - \left(x + y\right)^{2}}{x^{2} - x y} + \frac{1}{x^{2}} \left(- x + y\right)^{2}\right)$$
/ 2 2 \
4 |(y - x) (x + y) - 4*x*y|
x *|-------- - ----------------|
| 2 2 |
\ x x - x*y /
--------------------------------
4 2 2
- y + x *y
$$\frac{x^{4}}{x^{2} y^{2} - y^{4}} \left(- \frac{- 4 x y + \left(x + y\right)^{2}}{x^{2} - x y} + \frac{1}{x^{2}} \left(- x + y\right)^{2}\right)$$
x^4*((y - x)^2/x^2 - ((x + y)^2 - 4.0*x*y)/(x^2 - x*y))/(-y^4 + x^2*y^2)
Рациональный знаменатель
[src] 2 / 2 / 2 \ 2 / 2 \\
x *\x *\- (x + y) + 4*x*y/ + (y - x) *\x - x*y//
--------------------------------------------------
/ 2 \ / 4 2 2\
\x - x*y/*\- y + x *y /
$$\frac{x^{2}}{\left(x^{2} - x y\right) \left(x^{2} y^{2} - y^{4}\right)} \left(x^{2} \left(4 x y - \left(x + y\right)^{2}\right) + \left(- x + y\right)^{2} \left(x^{2} - x y\right)\right)$$
Объединение рациональных выражений
[src] 2 / 2 / 2 \\
x *\(y - x) *(x - y) - x*\(x + y) - 4*x*y//
--------------------------------------------
2 / 2 2\
y *(x - y)*\x - y /
$$\frac{x^{2}}{y^{2} \left(x - y\right) \left(x^{2} - y^{2}\right)} \left(- x \left(- 4 x y + \left(x + y\right)^{2}\right) + \left(- x + y\right)^{2} \left(x - y\right)\right)$$
$$- \frac{x^{2}}{y \left(x + y\right)}$$
/ 2 2 \
4 |(y - x) (x + y) - 4*x*y|
x *|-------- - ----------------|
| 2 2 |
\ x x - x*y /
--------------------------------
4 2 2
- y + x *y
$$\frac{x^{4}}{x^{2} y^{2} - y^{4}} \left(- \frac{- 4 x y + \left(x + y\right)^{2}}{x^{2} - x y} + \frac{1}{x^{2}} \left(- x + y\right)^{2}\right)$$
$$- \frac{x^{2}}{x y + y^{2}}$$
$$- \frac{x^{2}}{y \left(x + y\right)}$$
/ 2 2 \
4 |(y - x) (x + y) - 4*x*y|
x *|-------- - ----------------|
| 2 2 |
\ x x - x*y /
--------------------------------
2 2 4
x *y - y
$$\frac{x^{4}}{x^{2} y^{2} - y^{4}} \left(- \frac{- 4 x y + \left(x + y\right)^{2}}{x^{2} - x y} + \frac{1}{x^{2}} \left(- x + y\right)^{2}\right)$$