Тригонометрическая часть
[src] 2
1 - tan (a) 3*tan(2*a)
----------- + -------------
2 2
1 + tan (a) 1 + tan (2*a) 1 − tan 2 ( a ) tan 2 ( a ) + 1 + 3 tan ( 2 a ) tan 2 ( 2 a ) + 1 \frac{1 - \tan^{2}{\left(a \right)}}{\tan^{2}{\left(a \right)} + 1} + \frac{3 \tan{\left(2 a \right)}}{\tan^{2}{\left(2 a \right)} + 1} tan 2 ( a ) + 1 1 − tan 2 ( a ) + tan 2 ( 2 a ) + 1 3 tan ( 2 a ) // 0 for And(im(a) = 0, 2*a mod pi = 0)\ // 1 for And(im(a) = 0, a mod pi = 0)\ // 0 for And(im(a) = 0, 4*a mod pi = 0)\ // 1 for And(im(a) = 0, a mod pi = 0)\
|< |*|< | + |< | + |< |
\\sin(2*a) otherwise / \\cos(2*a) otherwise / \\sin(4*a) otherwise / \\cos(2*a) otherwise / ( ( { 0 for im ( a ) = 0 ∧ 2 a m o d π = 0 sin ( 2 a ) otherwise ) ( { 1 for im ( a ) = 0 ∧ a m o d π = 0 cos ( 2 a ) otherwise ) ) + ( { 0 for im ( a ) = 0 ∧ 4 a m o d π = 0 sin ( 4 a ) otherwise ) + ( { 1 for im ( a ) = 0 ∧ a m o d π = 0 cos ( 2 a ) otherwise ) \left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\sin{\left(2 a \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\cos{\left(2 a \right)} & \text{otherwise} \end{cases}\right)\right) + \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 4 a \bmod \pi = 0 \\\sin{\left(4 a \right)} & \text{otherwise} \end{cases}\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\cos{\left(2 a \right)} & \text{otherwise} \end{cases}\right) ( ( { 0 sin ( 2 a ) for im ( a ) = 0 ∧ 2 a mod π = 0 otherwise ) ( { 1 cos ( 2 a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise ) ) + ( { 0 sin ( 4 a ) for im ( a ) = 0 ∧ 4 a mod π = 0 otherwise ) + ( { 1 cos ( 2 a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise ) 1 1 1
-------- + ------------- + ----------------------
csc(4*a) /pi \ /pi \
csc|-- - 2*a| csc(2*a)*csc|-- - 2*a|
\2 / \2 / 1 csc ( − 2 a + π 2 ) + 1 csc ( 4 a ) + 1 csc ( 2 a ) csc ( − 2 a + π 2 ) \frac{1}{\csc{\left(- 2 a + \frac{\pi}{2} \right)}} + \frac{1}{\csc{\left(4 a \right)}} + \frac{1}{\csc{\left(2 a \right)} \csc{\left(- 2 a + \frac{\pi}{2} \right)}} csc ( − 2 a + 2 π ) 1 + csc ( 4 a ) 1 + csc ( 2 a ) csc ( − 2 a + 2 π ) 1 1 1 1
-------- + ------------- + ----------------------
sec(2*a) / pi\ / pi\
sec|4*a - --| sec(2*a)*sec|2*a - --|
\ 2 / \ 2 / 1 sec ( 4 a − π 2 ) + 1 sec ( 2 a ) + 1 sec ( 2 a ) sec ( 2 a − π 2 ) \frac{1}{\sec{\left(4 a - \frac{\pi}{2} \right)}} + \frac{1}{\sec{\left(2 a \right)}} + \frac{1}{\sec{\left(2 a \right)} \sec{\left(2 a - \frac{\pi}{2} \right)}} sec ( 4 a − 2 π ) 1 + sec ( 2 a ) 1 + sec ( 2 a ) sec ( 2 a − 2 π ) 1 // 0 for And(im(a) = 0, 2*a mod pi = 0)\ // 0 for And(im(a) = 0, 4*a mod pi = 0)\
|| | // 1 for And(im(a) = 0, a mod pi = 0)\ || | // 1 for And(im(a) = 0, a mod pi = 0)\
|< / pi\ |*|< | + |< / pi\ | + |< |
||cos|2*a - --| otherwise | \\cos(2*a) otherwise / ||cos|4*a - --| otherwise | \\cos(2*a) otherwise /
\\ \ 2 / / \\ \ 2 / / ( ( { 0 for im ( a ) = 0 ∧ 2 a m o d π = 0 cos ( 2 a − π 2 ) otherwise ) ( { 1 for im ( a ) = 0 ∧ a m o d π = 0 cos ( 2 a ) otherwise ) ) + ( { 0 for im ( a ) = 0 ∧ 4 a m o d π = 0 cos ( 4 a − π 2 ) otherwise ) + ( { 1 for im ( a ) = 0 ∧ a m o d π = 0 cos ( 2 a ) otherwise ) \left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\cos{\left(2 a - \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\cos{\left(2 a \right)} & \text{otherwise} \end{cases}\right)\right) + \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 4 a \bmod \pi = 0 \\\cos{\left(4 a - \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\cos{\left(2 a \right)} & \text{otherwise} \end{cases}\right) ( ( { 0 cos ( 2 a − 2 π ) for im ( a ) = 0 ∧ 2 a mod π = 0 otherwise ) ( { 1 cos ( 2 a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise ) ) + ( { 0 cos ( 4 a − 2 π ) for im ( a ) = 0 ∧ 4 a mod π = 0 otherwise ) + ( { 1 cos ( 2 a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise ) /pi \ /pi \
sin(2*a)*sin|-- + 2*a| + sin(4*a) + sin|-- + 2*a|
\2 / \2 / sin ( 2 a ) sin ( 2 a + π 2 ) + sin ( 4 a ) + sin ( 2 a + π 2 ) \sin{\left(2 a \right)} \sin{\left(2 a + \frac{\pi}{2} \right)} + \sin{\left(4 a \right)} + \sin{\left(2 a + \frac{\pi}{2} \right)} sin ( 2 a ) sin ( 2 a + 2 π ) + sin ( 4 a ) + sin ( 2 a + 2 π ) 3*sin(4*a) /pi \
---------- + sin|-- + 2*a|
2 \2 / 3 sin ( 4 a ) 2 + sin ( 2 a + π 2 ) \frac{3 \sin{\left(4 a \right)}}{2} + \sin{\left(2 a + \frac{\pi}{2} \right)} 2 3 sin ( 4 a ) + sin ( 2 a + 2 π ) 1 1 1
-------- + -------- + -----------------
csc(4*a) sec(2*a) csc(2*a)*sec(2*a) 1 sec ( 2 a ) + 1 csc ( 4 a ) + 1 csc ( 2 a ) sec ( 2 a ) \frac{1}{\sec{\left(2 a \right)}} + \frac{1}{\csc{\left(4 a \right)}} + \frac{1}{\csc{\left(2 a \right)} \sec{\left(2 a \right)}} sec ( 2 a ) 1 + csc ( 4 a ) 1 + csc ( 2 a ) sec ( 2 a ) 1 // 0 for And(im(a) = 0, 4*a mod pi = 0)\
|| |
|| 2*cot(2*a) |
3*|<------------- otherwise |
|| 2 | // 1 for And(im(a) = 0, a mod pi = 0)\
||1 + cot (2*a) | || |
\\ / || 2 |
------------------------------------------------------ + |<-1 + cot (a) |
2 ||------------ otherwise |
|| 2 |
\\1 + cot (a) / ( 3 ( { 0 for im ( a ) = 0 ∧ 4 a m o d π = 0 2 cot ( 2 a ) cot 2 ( 2 a ) + 1 otherwise ) 2 ) + ( { 1 for im ( a ) = 0 ∧ a m o d π = 0 cot 2 ( a ) − 1 cot 2 ( a ) + 1 otherwise ) \left(\frac{3 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 4 a \bmod \pi = 0 \\\frac{2 \cot{\left(2 a \right)}}{\cot^{2}{\left(2 a \right)} + 1} & \text{otherwise} \end{cases}\right)}{2}\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{\cot^{2}{\left(a \right)} - 1}{\cot^{2}{\left(a \right)} + 1} & \text{otherwise} \end{cases}\right) 2 3 ( { 0 c o t 2 ( 2 a ) + 1 2 c o t ( 2 a ) for im ( a ) = 0 ∧ 4 a mod π = 0 otherwise ) + ( { 1 c o t 2 ( a ) + 1 c o t 2 ( a ) − 1 for im ( a ) = 0 ∧ a mod π = 0 otherwise ) / pi\
3*cos|4*a - --|
\ 2 /
--------------- + cos(2*a)
2 cos ( 2 a ) + 3 cos ( 4 a − π 2 ) 2 \cos{\left(2 a \right)} + \frac{3 \cos{\left(4 a - \frac{\pi}{2} \right)}}{2} cos ( 2 a ) + 2 3 cos ( 4 a − 2 π ) 3*sin(4*a)
---------- + cos(2*a)
2 3 sin ( 4 a ) 2 + cos ( 2 a ) \frac{3 \sin{\left(4 a \right)}}{2} + \cos{\left(2 a \right)} 2 3 sin ( 4 a ) + cos ( 2 a ) // 1 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, a mod pi = 0)\
// 0 for And(im(a) = 0, 2*a mod pi = 0)\ || | // 0 for And(im(a) = 0, 4*a mod pi = 0)\ || |
|< |*|< /pi \ | + |< | + |< /pi \ |
\\sin(2*a) otherwise / ||sin|-- + 2*a| otherwise | \\sin(4*a) otherwise / ||sin|-- + 2*a| otherwise |
\\ \2 / / \\ \2 / / ( ( { 0 for im ( a ) = 0 ∧ 2 a m o d π = 0 sin ( 2 a ) otherwise ) ( { 1 for im ( a ) = 0 ∧ a m o d π = 0 sin ( 2 a + π 2 ) otherwise ) ) + ( { 0 for im ( a ) = 0 ∧ 4 a m o d π = 0 sin ( 4 a ) otherwise ) + ( { 1 for im ( a ) = 0 ∧ a m o d π = 0 sin ( 2 a + π 2 ) otherwise ) \left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\sin{\left(2 a \right)} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin{\left(2 a + \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right)\right) + \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 4 a \bmod \pi = 0 \\\sin{\left(4 a \right)} & \text{otherwise} \end{cases}\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\sin{\left(2 a + \frac{\pi}{2} \right)} & \text{otherwise} \end{cases}\right) ( ( { 0 sin ( 2 a ) for im ( a ) = 0 ∧ 2 a mod π = 0 otherwise ) ( { 1 sin ( 2 a + 2 π ) for im ( a ) = 0 ∧ a mod π = 0 otherwise ) ) + ( { 0 sin ( 4 a ) for im ( a ) = 0 ∧ 4 a mod π = 0 otherwise ) + ( { 1 sin ( 2 a + 2 π ) for im ( a ) = 0 ∧ a mod π = 0 otherwise ) 1 3
-------- + ---------------
sec(2*a) / pi\
2*sec|4*a - --|
\ 2 / 3 2 sec ( 4 a − π 2 ) + 1 sec ( 2 a ) \frac{3}{2 \sec{\left(4 a - \frac{\pi}{2} \right)}} + \frac{1}{\sec{\left(2 a \right)}} 2 sec ( 4 a − 2 π ) 3 + sec ( 2 a ) 1 // 1 for And(im(a) = 0, a mod pi = 0)\ // 1 for And(im(a) = 0, a mod pi = 0)\
// 0 for And(im(a) = 0, 2*a mod pi = 0)\ || | // 0 for And(im(a) = 0, 4*a mod pi = 0)\ || |
|| | || 1 | || | || 1 |
|< 1 |*|<------------- otherwise | + |< 1 | + |<------------- otherwise |
||-------- otherwise | || /pi \ | ||-------- otherwise | || /pi \ |
\\csc(2*a) / ||csc|-- - 2*a| | \\csc(4*a) / ||csc|-- - 2*a| |
\\ \2 / / \\ \2 / / ( ( { 0 for im ( a ) = 0 ∧ 2 a m o d π = 0 1 csc ( 2 a ) otherwise ) ( { 1 for im ( a ) = 0 ∧ a m o d π = 0 1 csc ( − 2 a + π 2 ) otherwise ) ) + ( { 0 for im ( a ) = 0 ∧ 4 a m o d π = 0 1 csc ( 4 a ) otherwise ) + ( { 1 for im ( a ) = 0 ∧ a m o d π = 0 1 csc ( − 2 a + π 2 ) otherwise ) \left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\frac{1}{\csc{\left(2 a \right)}} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{1}{\csc{\left(- 2 a + \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right)\right) + \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 4 a \bmod \pi = 0 \\\frac{1}{\csc{\left(4 a \right)}} & \text{otherwise} \end{cases}\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{1}{\csc{\left(- 2 a + \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right) ( ( { 0 c s c ( 2 a ) 1 for im ( a ) = 0 ∧ 2 a mod π = 0 otherwise ) ( { 1 c s c ( − 2 a + 2 π ) 1 for im ( a ) = 0 ∧ a mod π = 0 otherwise ) ) + ( { 0 c s c ( 4 a ) 1 for im ( a ) = 0 ∧ 4 a mod π = 0 otherwise ) + ( { 1 c s c ( − 2 a + 2 π ) 1 for im ( a ) = 0 ∧ a mod π = 0 otherwise ) 1 3
------------- + ----------
/pi \ 2*csc(4*a)
csc|-- - 2*a|
\2 / 1 csc ( − 2 a + π 2 ) + 3 2 csc ( 4 a ) \frac{1}{\csc{\left(- 2 a + \frac{\pi}{2} \right)}} + \frac{3}{2 \csc{\left(4 a \right)}} csc ( − 2 a + 2 π ) 1 + 2 csc ( 4 a ) 3 / pi\ / pi\
cos(2*a)*cos|2*a - --| + cos(2*a) + cos|4*a - --|
\ 2 / \ 2 / cos ( 2 a ) cos ( 2 a − π 2 ) + cos ( 2 a ) + cos ( 4 a − π 2 ) \cos{\left(2 a \right)} \cos{\left(2 a - \frac{\pi}{2} \right)} + \cos{\left(2 a \right)} + \cos{\left(4 a - \frac{\pi}{2} \right)} cos ( 2 a ) cos ( 2 a − 2 π ) + cos ( 2 a ) + cos ( 4 a − 2 π ) // 0 for And(im(a) = 0, 2*a mod pi = 0)\ // 1 for And(im(a) = 0, a mod pi = 0)\ // 0 for And(im(a) = 0, 4*a mod pi = 0)\ // 1 for And(im(a) = 0, a mod pi = 0)\
|| | || | || | || |
|| 2*tan(a) | || 2 | || 2*tan(2*a) | || 2 |
|<----------- otherwise |*|<1 - tan (a) | + |<------------- otherwise | + |<1 - tan (a) |
|| 2 | ||----------- otherwise | || 2 | ||----------- otherwise |
||1 + tan (a) | || 2 | ||1 + tan (2*a) | || 2 |
\\ / \\1 + tan (a) / \\ / \\1 + tan (a) / ( ( { 0 for im ( a ) = 0 ∧ 2 a m o d π = 0 2 tan ( a ) tan 2 ( a ) + 1 otherwise ) ( { 1 for im ( a ) = 0 ∧ a m o d π = 0 1 − tan 2 ( a ) tan 2 ( a ) + 1 otherwise ) ) + ( { 0 for im ( a ) = 0 ∧ 4 a m o d π = 0 2 tan ( 2 a ) tan 2 ( 2 a ) + 1 otherwise ) + ( { 1 for im ( a ) = 0 ∧ a m o d π = 0 1 − tan 2 ( a ) tan 2 ( a ) + 1 otherwise ) \left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\frac{2 \tan{\left(a \right)}}{\tan^{2}{\left(a \right)} + 1} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{1 - \tan^{2}{\left(a \right)}}{\tan^{2}{\left(a \right)} + 1} & \text{otherwise} \end{cases}\right)\right) + \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 4 a \bmod \pi = 0 \\\frac{2 \tan{\left(2 a \right)}}{\tan^{2}{\left(2 a \right)} + 1} & \text{otherwise} \end{cases}\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{1 - \tan^{2}{\left(a \right)}}{\tan^{2}{\left(a \right)} + 1} & \text{otherwise} \end{cases}\right) ( ( { 0 t a n 2 ( a ) + 1 2 t a n ( a ) for im ( a ) = 0 ∧ 2 a mod π = 0 otherwise ) ( { 1 t a n 2 ( a ) + 1 1 − t a n 2 ( a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise ) ) + ( { 0 t a n 2 ( 2 a ) + 1 2 t a n ( 2 a ) for im ( a ) = 0 ∧ 4 a mod π = 0 otherwise ) + ( { 1 t a n 2 ( a ) + 1 1 − t a n 2 ( a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise ) // 0 for And(im(a) = 0, 2*a mod pi = 0)\ // 1 for And(im(a) = 0, a mod pi = 0)\ // 0 for And(im(a) = 0, 4*a mod pi = 0)\ // 1 for And(im(a) = 0, a mod pi = 0)\
|| | || | || | || |
|| 2*cot(a) | || 2 | || 2*cot(2*a) | || 2 |
|<----------- otherwise |*|<-1 + cot (a) | + |<------------- otherwise | + |<-1 + cot (a) |
|| 2 | ||------------ otherwise | || 2 | ||------------ otherwise |
||1 + cot (a) | || 2 | ||1 + cot (2*a) | || 2 |
\\ / \\1 + cot (a) / \\ / \\1 + cot (a) / ( ( { 0 for im ( a ) = 0 ∧ 2 a m o d π = 0 2 cot ( a ) cot 2 ( a ) + 1 otherwise ) ( { 1 for im ( a ) = 0 ∧ a m o d π = 0 cot 2 ( a ) − 1 cot 2 ( a ) + 1 otherwise ) ) + ( { 0 for im ( a ) = 0 ∧ 4 a m o d π = 0 2 cot ( 2 a ) cot 2 ( 2 a ) + 1 otherwise ) + ( { 1 for im ( a ) = 0 ∧ a m o d π = 0 cot 2 ( a ) − 1 cot 2 ( a ) + 1 otherwise ) \left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\frac{2 \cot{\left(a \right)}}{\cot^{2}{\left(a \right)} + 1} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{\cot^{2}{\left(a \right)} - 1}{\cot^{2}{\left(a \right)} + 1} & \text{otherwise} \end{cases}\right)\right) + \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 4 a \bmod \pi = 0 \\\frac{2 \cot{\left(2 a \right)}}{\cot^{2}{\left(2 a \right)} + 1} & \text{otherwise} \end{cases}\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{\cot^{2}{\left(a \right)} - 1}{\cot^{2}{\left(a \right)} + 1} & \text{otherwise} \end{cases}\right) ( ( { 0 c o t 2 ( a ) + 1 2 c o t ( a ) for im ( a ) = 0 ∧ 2 a mod π = 0 otherwise ) ( { 1 c o t 2 ( a ) + 1 c o t 2 ( a ) − 1 for im ( a ) = 0 ∧ a mod π = 0 otherwise ) ) + ( { 0 c o t 2 ( 2 a ) + 1 2 c o t ( 2 a ) for im ( a ) = 0 ∧ 4 a mod π = 0 otherwise ) + ( { 1 c o t 2 ( a ) + 1 c o t 2 ( a ) − 1 for im ( a ) = 0 ∧ a mod π = 0 otherwise ) // 0 for And(im(a) = 0, 2*a mod pi = 0)\ // 1 for And(im(a) = 0, a mod pi = 0)\ // 0 for And(im(a) = 0, 4*a mod pi = 0)\ // 1 for And(im(a) = 0, a mod pi = 0)\
|| | || | || | || |
| ( ( { 0 for im ( a ) = 0 ∧ 2 a m o d π = 0 { 0 for im ( a ) = 0 ∧ 2 a m o d π = 0 sin ( 2 a ) otherwise otherwise ) ( { 1 for im ( a ) = 0 ∧ a m o d π = 0 { 1 for im ( a ) = 0 ∧ a m o d π = 0 cos ( 2 a ) otherwise otherwise ) ) + ( { 0 for im ( a ) = 0 ∧ 4 a m o d π = 0 { 0 for im ( a ) = 0 ∧ 4 a m o d π = 0 sin ( 4 a ) otherwise otherwise ) + ( { 1 for im ( a ) = 0 ∧ a m o d π = 0 { 1 for im ( a ) = 0 ∧ a m o d π = 0 cos ( 2 a ) otherwise otherwise ) \left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\sin{\left(2 a \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\cos{\left(2 a \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right) + \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 4 a \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 4 a \bmod \pi = 0 \\\sin{\left(4 a \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\cos{\left(2 a \right)} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) ⎩ ⎨ ⎧ 0 { 0 sin ( 2 a ) for im ( a ) = 0 ∧ 2 a mod π = 0 otherwise for im ( a ) = 0 ∧ 2 a mod π = 0 otherwise ⎩ ⎨ ⎧ 1 { 1 cos ( 2 a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise for im ( a ) = 0 ∧ a mod π = 0 otherwise + ⎩ ⎨ ⎧ 0 { 0 sin ( 4 a ) for im ( a ) = 0 ∧ 4 a mod π = 0 otherwise for im ( a ) = 0 ∧ 4 a mod π = 0 otherwise + ⎩ ⎨ ⎧ 1 { 1 cos ( 2 a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise for im ( a ) = 0 ∧ a mod π = 0 otherwise 2 / 2 \
1 - tan (a) 2*tan(2*a) 2*\1 - tan (a)/*tan(a)
----------- + ------------- + ----------------------
2 2 2
1 + tan (a) 1 + tan (2*a) / 2 \
\1 + tan (a)/ 1 − tan 2 ( a ) tan 2 ( a ) + 1 + 2 ⋅ ( 1 − tan 2 ( a ) ) tan ( a ) ( tan 2 ( a ) + 1 ) 2 + 2 tan ( 2 a ) tan 2 ( 2 a ) + 1 \frac{1 - \tan^{2}{\left(a \right)}}{\tan^{2}{\left(a \right)} + 1} + \frac{2 \cdot \left(1 - \tan^{2}{\left(a \right)}\right) \tan{\left(a \right)}}{\left(\tan^{2}{\left(a \right)} + 1\right)^{2}} + \frac{2 \tan{\left(2 a \right)}}{\tan^{2}{\left(2 a \right)} + 1} tan 2 ( a ) + 1 1 − tan 2 ( a ) + ( tan 2 ( a ) + 1 ) 2 2 ⋅ ( 1 − tan 2 ( a ) ) tan ( a ) + tan 2 ( 2 a ) + 1 2 tan ( 2 a ) // 0 for And(im(a) = 0, 2*a mod pi = 0)\ // 1 for And(im(a) = 0, a mod pi = 0)\ // 0 for And(im(a) = 0, 4*a mod pi = 0)\ // 1 for And(im(a) = 0, a mod pi = 0)\
|| | || | || | || |
||/ 0 for And(im(a) = 0, 2*a mod pi = 0) | ||/ 1 for And(im(a) = 0, a mod pi = 0) | ||/ 0 for And(im(a) = 0, 4*a mod pi = 0) | ||/ 1 for And(im(a) = 0, a mod pi = 0) |
||| | ||| | ||| | ||| |
|<| 2*cot(a) |*|<| 2 | + |<| 2*cot(2*a) | + |<| 2 |
||<----------- otherwise otherwise | ||<-1 + cot (a) otherwise | ||<------------- otherwise otherwise | ||<-1 + cot (a) otherwise |
||| 2 | |||------------ otherwise | ||| 2 | |||------------ otherwise |
|||1 + cot (a) | ||| 2 | |||1 + cot (2*a) | ||| 2 |
\\\ / \\\1 + cot (a) / \\\ / \\\1 + cot (a) / ( ( { 0 for im ( a ) = 0 ∧ 2 a m o d π = 0 { 0 for im ( a ) = 0 ∧ 2 a m o d π = 0 2 cot ( a ) cot 2 ( a ) + 1 otherwise otherwise ) ( { 1 for im ( a ) = 0 ∧ a m o d π = 0 { 1 for im ( a ) = 0 ∧ a m o d π = 0 cot 2 ( a ) − 1 cot 2 ( a ) + 1 otherwise otherwise ) ) + ( { 0 for im ( a ) = 0 ∧ 4 a m o d π = 0 { 0 for im ( a ) = 0 ∧ 4 a m o d π = 0 2 cot ( 2 a ) cot 2 ( 2 a ) + 1 otherwise otherwise ) + ( { 1 for im ( a ) = 0 ∧ a m o d π = 0 { 1 for im ( a ) = 0 ∧ a m o d π = 0 cot 2 ( a ) − 1 cot 2 ( a ) + 1 otherwise otherwise ) \left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\frac{2 \cot{\left(a \right)}}{\cot^{2}{\left(a \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{\cot^{2}{\left(a \right)} - 1}{\cot^{2}{\left(a \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right)\right) + \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 4 a \bmod \pi = 0 \\\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 4 a \bmod \pi = 0 \\\frac{2 \cot{\left(2 a \right)}}{\cot^{2}{\left(2 a \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{\cot^{2}{\left(a \right)} - 1}{\cot^{2}{\left(a \right)} + 1} & \text{otherwise} \end{cases} & \text{otherwise} \end{cases}\right) ⎩ ⎨ ⎧ 0 { 0 c o t 2 ( a ) + 1 2 c o t ( a ) for im ( a ) = 0 ∧ 2 a mod π = 0 otherwise for im ( a ) = 0 ∧ 2 a mod π = 0 otherwise ⎩ ⎨ ⎧ 1 { 1 c o t 2 ( a ) + 1 c o t 2 ( a ) − 1 for im ( a ) = 0 ∧ a mod π = 0 otherwise for im ( a ) = 0 ∧ a mod π = 0 otherwise + ⎩ ⎨ ⎧ 0 { 0 c o t 2 ( 2 a ) + 1 2 c o t ( 2 a ) for im ( a ) = 0 ∧ 4 a mod π = 0 otherwise for im ( a ) = 0 ∧ 4 a mod π = 0 otherwise + ⎩ ⎨ ⎧ 1 { 1 c o t 2 ( a ) + 1 c o t 2 ( a ) − 1 for im ( a ) = 0 ∧ a mod π = 0 otherwise for im ( a ) = 0 ∧ a mod π = 0 otherwise // 0 for And(im(a) = 0, 2*a mod pi = 0)\ // 0 for And(im(a) = 0, 4*a mod pi = 0)\
|| | // 1 for And(im(a) = 0, a mod pi = 0)\ || | // 1 for And(im(a) = 0, a mod pi = 0)\
|| 1 | || | || 1 | || |
|<------------- otherwise |*|< 1 | + |<------------- otherwise | + |< 1 |
|| / pi\ | ||-------- otherwise | || / pi\ | ||-------- otherwise |
||sec|2*a - --| | \\sec(2*a) / ||sec|4*a - --| | \\sec(2*a) /
\\ \ 2 / / \\ \ 2 / / ( ( { 0 for im ( a ) = 0 ∧ 2 a m o d π = 0 1 sec ( 2 a − π 2 ) otherwise ) ( { 1 for im ( a ) = 0 ∧ a m o d π = 0 1 sec ( 2 a ) otherwise ) ) + ( { 0 for im ( a ) = 0 ∧ 4 a m o d π = 0 1 sec ( 4 a − π 2 ) otherwise ) + ( { 1 for im ( a ) = 0 ∧ a m o d π = 0 1 sec ( 2 a ) otherwise ) \left(\left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 2 a \bmod \pi = 0 \\\frac{1}{\sec{\left(2 a - \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right) \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{1}{\sec{\left(2 a \right)}} & \text{otherwise} \end{cases}\right)\right) + \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 4 a \bmod \pi = 0 \\\frac{1}{\sec{\left(4 a - \frac{\pi}{2} \right)}} & \text{otherwise} \end{cases}\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\frac{1}{\sec{\left(2 a \right)}} & \text{otherwise} \end{cases}\right) ( ( { 0 s e c ( 2 a − 2 π ) 1 for im ( a ) = 0 ∧ 2 a mod π = 0 otherwise ) ( { 1 s e c ( 2 a ) 1 for im ( a ) = 0 ∧ a mod π = 0 otherwise ) ) + ( { 0 s e c ( 4 a − 2 π ) 1 for im ( a ) = 0 ∧ 4 a mod π = 0 otherwise ) + ( { 1 s e c ( 2 a ) 1 for im ( a ) = 0 ∧ a mod π = 0 otherwise ) // 0 for And(im(a) = 0, 4*a mod pi = 0)\
3*|< |
\\sin(4*a) otherwise / // 1 for And(im(a) = 0, a mod pi = 0)\
------------------------------------------------- + |< |
2 \\cos(2*a) otherwise / ( 3 ( { 0 for im ( a ) = 0 ∧ 4 a m o d π = 0 sin ( 4 a ) otherwise ) 2 ) + ( { 1 for im ( a ) = 0 ∧ a m o d π = 0 cos ( 2 a ) otherwise ) \left(\frac{3 \left(\begin{cases} 0 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge 4 a \bmod \pi = 0 \\\sin{\left(4 a \right)} & \text{otherwise} \end{cases}\right)}{2}\right) + \left(\begin{cases} 1 & \text{for}\: \operatorname{im}{\left(a\right)} = 0 \wedge a \bmod \pi = 0 \\\cos{\left(2 a \right)} & \text{otherwise} \end{cases}\right) 2 3 ( { 0 sin ( 4 a ) for im ( a ) = 0 ∧ 4 a mod π = 0 otherwise ) + ( { 1 cos ( 2 a ) for im ( a ) = 0 ∧ a mod π = 0 otherwise )